
The Liquidsoap book

Samuel Mimram Romain Beauxis

ii

iii

Contents

1 Prologue 1
1.1 What is Liquidsoap? . 1
1.2 About this book . 5

2 The technology behind streams 9
2.1 Audio streams . 10
2.2 Streaming . 12
2.3 Audio sources . 13
2.4 Audio processing . 15
2.5 Interaction . 17
2.6 Video streams . 18

3 Installation 21
3.1 Automated building using opam 21
3.2 Using binaries . 23
3.3 Building from source . 24
3.4 Docker image . 25
3.5 Libraries used by Liquidsoap . 26

4 Setting up a simple radio station 29
4.1 The sound of a sine wave . 29
4.2 A radio . 32

5 A programming language 39
5.1 General features . 39
5.2 Writing scripts . 41

iv

5.3 Basic values . 43
5.4 Programming primitives . 51
5.5 Functions . 54
5.6 Records and modules . 65
5.7 Advanced values . 68
5.8 Configuration and preprocessor 70
5.9 Standard functions . 72
5.10 Streams in Liquidsoap . 78

6 Full workflow of a radio station 81
6.1 Inputs . 81
6.2 Scheduling . 98
6.3 Tracks and metadata . 107
6.4 Transitions . 114
6.5 Signal processing . 123
6.6 Outputs . 143
6.7 Encoding formats . 152
6.8 Interacting with other programs 166
6.9 Monitoring and testing . 190
6.10 Going further . 199

7 Video 211
7.1 Generating videos . 211
7.2 Filters and effects . 220
7.3 Encoders . 223
7.4 Specific inputs and outputs . 227

8 A streaming language 231
8.1 Sources and content types . 231
8.2 Frames . 240
8.3 The streaming model . 246
8.4 Requests . 255
8.5 Reading the source code . 264

Bibliography 267

Index 267

1

1
Prologue

1.1 What is Liquidsoap?

So, you want to make a webradio? At first, this looks like an easy task, we simply
need a program which takes a playlist of mp3 files, and broadcasts them one by
one over the internet. However, in practice, people want something much more
elaborate than just this.

For instance, we want to be able to switch between multiple playlists depending
on the current time, so that we can have different ambiances during the day
(soft music in the morning and techno at night). We also want to be able to
incorporate requests from users (for instance, they could ask for specific songs
on the website of the radio, or we could have guest dj shows). Moreover, the
music does not necessarily come from files which are stored on a local harddisk:
we should be able to relay other audio streams, YouTube videos, or a microphone
which is being recorded on the soundcard or on a distant computer.

When we start from music files, we rarely simply play one after the other.
Generally, we want to have some fading between songs, so that the transition
from a track to the next one is not too abrupt, and serious people want to be
able to specify the precise time at which this fading should be performed on a
per-song basis. We also want to add jingles between songs so that people know
and remember about our radio, and to use speech synthesis to give the name of
the song we just played. We should also maybe add commercials, so that we can
earn some money, and those should be played at a given fixed hour, but should
wait for the current song to be finished before launching the ad.

Also, we want to have some signal processing on our music in order to have a
nice and even sound. We should adjust the gain so that successive tracks roughly

2 CHAPTER 1. PROLOGUE

have the same volume. We should also compress and equalize the sound in order
to have a warm sound and to give the radio a unique color.

Finally, the rule number one of a webradio is that it should never fail. We want to
ensure that if, for some reason, the streamwe are usually relaying is not available,
or the external harddisk on which our mp3 files are stored is disconnected, an
emergency playlist will be played, so that we do not simply kick off our beloved
listeners. More difficult, if the microphone of the speaker is unplugged, the
soundcard will not be aware of it and will provide us with silence: we should be
able to detect that we are streaming blank and after some time also fallback to
the emergency playlist.

Once we have successfully generated the stream we had in mind, we need to
encode it in order to have data which is small enough to be sent in realtime
through the network. We actually often want to perform multiple simultaneous
encodings of the same stream: this is necessary to account for various qualities
(so that users can choose depending on their bandwidth) and various formats.
We should also be able to broadcast those encoded streams using the various
usual protocols that everybody uses nowadays.

As we can see, there is a wide variety of usages and technologies, and this is
only the tip of the iceberg. Even more complex setups can be looked for in
practice, especially if we have some form of interaction (through a website, a
chatbot, etc.). Most other software tools to generate webradios impose a fixed
workflow for webradios: they either consist in a graphical interface, which
generally offers the possibility of programming a grid with different broadcasts
on different timeslots, or a commandline program with more or less complex
configuration files. As soon as your setup does not fit within the predetermined
radio workflow, you are in trouble.

A new programming language. Based on this observation, we decided to
come up with a new programming language, our beloved Liquidsoap, which
would allow for describing how to generate audio streams. The generation
of the stream does not need to follow a particular pattern here, it is instead
implemented by the user in a script, which combines the various building blocks
of the language in an arbitrary way: the possibilities are thus virtually unlimited.
It does not impose a rigid approach for designing your radio, it can cope with
all the situations described above, and much more.

Liquidsoap itself is programmed in the OCaml programming language, but the
language you will use is not OCaml (although it was somewhat inspired of it), it
is a new language, and it is quite different from a general-purpose programming
language, such as Java or C. It was designed from scratch, with stream generation
in mind, trying to follow the principle formulated by Allan Kay: simple things

should be simple, complex things should be possible. This means that we had
in mind that our users are not typically experienced programmers, but rather

1.1. WHAT IS LIQUIDSOAP? 3

people enthusiastic about music or willing to disseminate information, and we
wanted a language as accessible as possible, were a basic script should be easy
to write and simple to understand, where the functions have reasonable default
values, where the errors are clearly located and explained. Yet, we provide most
things needed for handling sound (in particular, support for the wide variety
of file formats, protocols, sound plugins, and so on) as well as more advanced
functions which ensure that one can cope up with complex setups (e.g. through
callbacks and references).

It is also designed to be very robust, since we want our radios to stream forever
and not have our stream crash after a few weeks because of a rare case which is
badly handled. For this reason, before running a script, the Liquidsoap compiler
performs many in-depth checks on it, in order to ensure that everything will
go on well. Most of this analysis is performed using typing, which offer very
strong guarantees.

• We ensure that the data passed to function is of the expected form. For
instance, the user cannot pass a string to a function expecting an integer.
Believe it or not, this simple kind of error is the source of an incredible
number of bugs in everyday programs (ask Python or Javascript program-
mers).

• We ensure there is always something to stream: if there is a slight chance
that a source of sound might fail (e.g. the server on which the files are
stored gets disconnected), Liquidsoap imposes that there should be a
fallback source of sound.

• We ensure that we correctly handle synchronization issues. Two sources
of sound (such as two soundcards) generally produce the sound at slightly
different rates (the promised 44100 samples per seconds might actually be
44100.003 for one and 44099.99 for the other). While slightly imprecise
timing cannot be heard, the difference between the two sources accumu-
lates on the long run and can lead to blanks (or worse) in the resulting
sound. Liquidsoap imposes that a script will be able to cope with such
situations (typically by using buffers).

Again, these potential errors are not detected while running the script, but before,
and the experience shows that this results in quite robust sound production. In
this book, we will mainly focus on applications and will not detail much further
the theory behind those features of the language. If you want to know more
about it, you can have a look at the two articles published on the subject, which
are referenced at the end of the book (Baelde and Mimram 2008; Baelde, Beauxis,
and Mimram 2011).

While we are insisting on webradios because this is the original purpose of
Liquidsoap, the language is now also able to handle video. In some sense, this is
quite logical since the production of a video stream is quite similar to the one of
an audio stream, if we abstract away from technical details. Moreover, many

4 CHAPTER 1. PROLOGUE

radios are also streaming on YouTube, adding an image or a video, and maybe
some information text sliding at the bottom.

Free software. The Liquidsoap language is a free software. This of course means
that it is available for free on the internet, see the chapter 3, and more: this also
means that the source code of Liquidsoap is available for you to study, modify
and redistribute. Thus, you are not doomed if a specific feature is missing in the
language: you can add it if you have the competences for that, or hire someone
who does. This is guaranteed by the license of Liquidsoap, which is the GNU
General Public Licence 2 (and most of the libraries used by Liquidsoap are under
the GNU Lesser General Public Licence 2.1).

Liquidsoap will always be free, but this does not prevent companies from selling
products based on the language (and there are quite a number of those, be they
graphical interfaces, web interfaces, or providing webradio tools as part of larger
journalism tools) or services around the language (such as consulting). The main
constraint imposed by the license is that if you distribute a modified version
of Liquidsoap, say with some new features, you have to provide the user with
the source code containing your improvements, under the same license as the
original code.

The above does not apply to the current text which is covered by standard
copyright laws.

A bit of history. The Liquidsoap language was initiated by David Baelde and
Samuel Mimram, while students at the École Normale Supérieure de Lyon,
around 2004. They liked to listen to music while coding and it was fun to listen
to music together. This motivated David to write a Perl script based on the IceS
program in order to stream their own radio on the campus: geekradio was born.

They did not have that many music files, and at that time it was not so easy
to get online streams. But there were plenty of mp3s available on the internal
network of the campus, which were shared by the students. In order to have
access to those more easily, Samuel wrote a dirty campus indexer in OCaml
(called strider, later on replaced by bubble), and David made an ugly Perl hack
for adding user requests to the original system. It probably kind of worked for a
while. Then they wanted something more, and realized it was all too ugly.

So, they started to build the first audio streamer in pure OCaml, using libshout.
It had a simple telnet interface, so that a bot on irc (this was the chat at that
time) could send user requests easily to it, as well as from the website. There
were two request queues, one for users, one for admins. But it was still not so
nicely designed, and they felt it when they needed more. They wanted some
scheduling, especially techno music at night to code better.

Around that time, students had to propose and realize a “large” software project
for one of their courses, with the whole class of around 30 students. David and

1.2. ABOUT THIS BOOK 5

Samuel proposed to build a complete flexible webradio system called savonet

(an acronym of something like Samuel and David’s OCaml network). A complete
rewriting of every part of the streamer in OCaml was planned, with grand goals,
so that everybody would have something to do: a new website with so many
features, a new intelligent multilingual bot, new network libraries for glueing
that, etc. Most of those did not survive up to now. But still, Liquidsoap was
born, and plenty of new libraries for handling sound in OCaml emerged, many
of which we are still using today. The name of the language was a play on word
around “savonet” which sounds like “savonette”, a soap bar in French.

On the day when the project had to be presented to the teachers, the demo
miserably failed, but soon after that they were able to run a webradio with
several static (but periodically reloaded) playlists, scheduled on different times,
with a jingle added to the usual stream every hour, with the possibility of live
interventions, allowing for user requests via a bot on ircwhich would find songs
on the database of the campus, which have priority over static playlists but not
live shows, and added speech-synthetized metadata information at the end of
requests.

Later on, the two main developers were joined by Romain Beauxis who was
doing his PhD at the same place as David, and was also a radio enthusiastic:
he was part of Radio Pi, the radio of École Centrale in Paris, which was soon
entirely revamped and enhanced thanks to Liquidsoap. Over the recent year, he
has become the main maintainer (taking care of the releases) and developer of
Liquidsoap (adding, among other, support for FFmpeg in the language).

1.2 About this book

Prerequisites. We expect that the computer knowledge can vary much be-
tween Liquidsoap users, who can range from music enthusiasts to experienced
programmers, and we tried to accommodate with all those backgrounds. Never-
theless, we have to suppose that the reader of this book is familiar with some
basic concepts and tools. In particular, this book does not cover the basics of
text file editing and Unix shell scripting (how to use the command line, how to
run a program, and so on). Some knowledge in signal processing, streaming and
programming can also be useful.

Liquidsoap version. The language has gone through some major changes
since its beginning and maintaining full backward-compatibility was impossible.
In this book, we assume that you have a version of Liquidsoap which is at least
2.2. Most examples could easily be adapted to work with earlier versions though,
at the cost of making minor changes.

How to read the book. This book is intended to be read mostly sequentially,
excepting perhaps chapter 5, where we present the whole language in details,

6 CHAPTER 1. PROLOGUE

which can be skimmed trough at first. It is meant as a way of learning Liquidsoap,
not as a 500+ pages references manual: should you need details about the
arguments of a particular operator, you are advised to have a look at the online
documentation.

We explain the technological challenges that we have face in order to produce
multimedia streams in chapter 2 and are addressed by Liquidsoap. The means of
installing the software are described in chapter 3. We then describe in chapter 4
what everybody wants to start with: setting up a simple webradio station. Before,
going to more advanced uses, we first need to understand what we can do in this
language, and this is the purpose of chapter 5. We then detail the various ways
to generate a webradio in chapter 6 and a video stream in chapter 7. Finally, for
interested readers, we give details about the internals of the language and the
production of streams in chapter 8.

How to get help. You are reading the book and still have questions? There
are many ways to get in touch with the community and obtain help to get your
problem solved:

1. the Liquidsoap website1 contains an extensive up-to-date documentation
and tutorials about specific points,

2. the Liquidsoap discord chat2 is a public chat on where you can have
instantaneous discussions,

3. the Liquidsoap mailing-list3 is there if you would rather discuss by mail
(how old are you?),

4. the Liquidsoap github page4 is the place to report bugs,
5. there is also a Liquidsoap discussion board5
6. we regularly organize a workshop called Liquidshop6 where you can dis-

cuss with creators and users of Liquidsoap; the videos of the presentations
are also made available afterward.

Please remember to be kind, most of the people there are doing this on their
free time!

How to improve the book. We did our best to provide a progressive and
illustrated introduction to Liquidsoap, which covers almost all the language,
including the most advanced features. However, we are open to suggestions: if
you find some error, some unclear explanation, or some missing topic, please tell
us! The best way is by opening an issue on the dedicated bugtracker7, but you

1https://liquidsoap.info/
2http://chat.liquidsoap.info
3savonet-users@lists.sf.net
4https://github.com/savonet/liquidsoap/issues
5https://github.com/savonet/liquidsoap/discussions
6http://www.liquidsoap.info/liquidshop/
7https://github.com/savonet/book/issues

https://liquidsoap.info/
http://chat.liquidsoap.info
savonet-users@lists.sf.net
https://github.com/savonet/liquidsoap/issues
https://github.com/savonet/liquidsoap/discussions
http://www.liquidsoap.info/liquidshop/
https://github.com/savonet/book/issues

1.2. ABOUT THIS BOOK 7

can also reach us by mail at sam@liquidsoap.info and romain@liquidsoap.info.
Please include page numbers and text excerpts if your comment applies to a
particular point of the book (or, better, make pull requests). The version you
are holding in your hands was compiled on 29 January 2024, you can expect
frequent revisions to fix found issues. Those will be made available online1.

The authors. The authors of the book you have in your hands are the two
main current developers of Liquidsoap. Samuel Mimram obtained his PhD in
computer science 2009 and is currently a Professor in computer science in École
polytechnique, France. Romain Beauxis obtained his PhD in computer science in
2009 and is currently a software engineer based in New Orleans.

Thanks. The advent of Liquidsoap and this book would not have been possible
without the numerous contributors over the years, the first of them being David
Baelde who was a leading creator and designer of the language, but also the
students of the MIM1 (big up to Florent Bouchez, Julien Cristau, Stéphane
Gimenez and Sattisvar Tandabany), and our fellow users Gilles Pietri, Clément
Renard and Vincent Tabard (who also designed the logo), as well as all the
regulars of slack and the mailing-list. Many thanks also to the many people who
helped to improve the language by reporting bugs or suggesting ideas, and to
the Radio France team who where enthusiastic about the project and motivated
some new developments (hello Maxime Bugeia, Youenn Piolet and others).

1http://www.liquidsoap.info/book/

http://www.liquidsoap.info/book/

8 CHAPTER 1. PROLOGUE

9

2
The technology behind streams

Before getting our hands on Liquidsoap, let us quickly describe the typical
toolchain involved in a webradio, in case the reader is not familiar with it. It
typically consists of the following three elements.

The stream generator is a program which generates an audio stream, generally in
compressed form such as mp3 or aac, be it from playlists, live sources, and so on.
Liquidsoap is one of those and we will be most exclusively concerned with it, but
there are other friendly competitors ranging from Ezstream2, IceS3 or DarkIce4
which are simple command-line free software that can stream a live input or
a playlist to an Icecast server, to Rivendell5 or SAM Broadcaster6 which are
graphical interfaces to handle the scheduling of your radio. Nowadays, websites
are also proposing to do this online on the cloud; these include AzuraCast7,
Centova8 and Radionomy9 which are all powered by Liquidsoap!

A streaming media system, which is generally Icecast10. Its role is to relay the
stream from the generator to the listeners, of which there can be thousands.
With the advent of hls, it tends to be more and more replaced by a traditional
web server.

A media player, which connects to the server and plays the stream for the client,
it can either be a software (such as iTunes), an Android application, or a website.

2http://icecast.org/ezstream/
3http://icecast.org/ices/
4http://www.darkice.org/
5http://www.rivendellaudio.org/
6https://spacial.com/
7https://www.azuracast.com/
8https://centova.com/
9https://www.radionomy.com/
10http://www.icecast.org/

http://icecast.org/ezstream/
http://icecast.org/ices/
http://www.darkice.org/
http://www.rivendellaudio.org/
https://spacial.com/
https://www.azuracast.com/
https://centova.com/
https://www.radionomy.com/
http://www.icecast.org/

10 CHAPTER 2. THE TECHNOLOGY BEHIND STREAMS

Since we are mostly concerned with stream generation, we shall begin by de-
scribing the main technological challenges behind it.

2.1 Audio streams

Digital audio. Sound consists in regular vibrations of the ambient air, going
back and forth, which you perceive through the displacements of the tympanic
membrane that they induce in your ear. In order to be represented in a computer,
such a sound is usually captured by a microphone, which also has a membrane,
and is represented by samples, corresponding to the successive positions of
the membrane of the microphone. In general, sound is sampled at 44.1 kHz,
which means that samples are captured 44100 times per second, and indicate
the position of the membrane, which is represented by a floating point number,
conventionally between -1 and 1. In the figure below, the position of the mem-
brane is represented by the continuous black curve and the successive samples
correspond to the grayed rectangles:

time

-1

1

The way this data is represented is a matter of convention and many of those
can be found in “nature”:

• the sampling rate is typically 44.1 kHz (this is for instance the case in audio
CDs), but the movie industry likes more 48 kHz, and recent equipment
and studios use higher rates for better precision (e.g. DVDs are sampled
at 92 kHz),

• the representation of samples varies: Liquidsoap internally uses floats
between -1 and 1 (stored in double precision with 64 bits), but other
conventions exist (e.g. CDs use 16 bits integers ranging from -32768 to
32767, and 24 bits integers are also common).

In any case, this means lots of data. For instance, an audio sample in cd quality
takes 2 bytes (= 16 bits, remember that a byte is 8 bits) for each of the 2 channels
and 1 minute of sound is 44100×2×2×60 bytes, which is roughly 10 MB per
minute.

Compression. Because of the large quantities of data involved, sound is typ-
ically compressed, especially if you want to send it over the internet where
the bandwidth, i.e. the quantity of information you can send in a given period
of time, matters: it is not unlimited and it costs money. To give you an idea,

2.1. AUDIO STREAMS 11

a typical fiber connection nowadays has an upload rate of 100 megabits per
second, with which you can send cd quality audio to roughly 70 listeners only.

One way to compress audio consists in using the standard tools from coding
and information theory: if something occurs often then encode it with a small
sequence of bytes (this is how compression formats such as zip work for instance).
The flac format uses this principle and generally achieves compression to around
65% of the original size. This compression format is lossless, which means that if
you compress and then decompress an audio file, you will get back to the exact
same file you started with.

In order to achieve more compression, we should be prepared to lose some
data present in the original file. Most compressed audio formats are based, in
addition to the previous ideas, on psychoacoustic models which take in account
the way sound is perceived by the human hear and processed by the human
brain. For instance, the ears are much more sensitive in the 1 to 5 kHz range so
that we can be more rough outside this range, some low intensity signals can be
masked by high intensity signals (i.e., we do not hear them anymore in presence
of other loud sound sources), they do not generally perceive phase difference
under a certain frequency so that all audio data below that threshold can be
encoded in mono, and so on. Most compression formats are destructive: they
remove some information in the original signal in order for it to be smaller. The
most well-known are mp3, Opus and aac: the one you want to use is a matter
of taste and support on the user-end. The mp3 format is the most widespread,
the Opus format has the advantage of being open-source and patent-free, has a
good quality/bandwidth radio and is reasonably supported by modern browsers
but hardware support is almost nonexistent, the aac format is proprietary so
that good free encoders are more difficult to find (because they are subject to
licensing fees) but achieves good sounding at high compression rates and is quite
well supported, etc. A typical mp3 is encoded at a bitrate of 128 kbps (kilobits
per second, although rates of 192 kbps and higher are recommended if you favor
sound quality), meaning that 1 minute will weight roughly 1 MB, which is 10%
of the original sound in cd quality.

Most of these formats also support variable bitrates meaning that the bitrate
can be adapted within the file: complex parts of the audio will be encoded at
higher rates and simpler ones at low rates. For those, the resulting stream size
will heavily depend on the actual audio and is thus more difficult to predict, by
the perceived quality is higher.

As a side note, we were a bit imprecise above when speaking of a “file format”
and we should distinguish between two things: the codec which is the algorithm
we used to compress the audio data, and the container which is the file format
used to store the compressed data. This is why one generally speaks of ogg/opus:
Ogg is the container and Opus is the codec. A container can usually embed
streams encoded with various codecs (e.g. ogg can also contain flac or vorbis

12 CHAPTER 2. THE TECHNOLOGY BEHIND STREAMS

streams), and a given codec can be embedded in various containers (e.g. flac and
vorbis streams can also be embedded into Matroska containers). In particular,
for video streams, the container typically contains multiple streams (one for
video and one for audio), each encoded with a different codec, as well as other
information (metadata, subtitles, etc.).

Metadata. Most audio streams are equipped with metadata which are textual
information describing the contents of the audio. A typical music file will contain,
as metadata, the title, the artist, the album name, the year of recording, and so
on. Custom metadata are also useful to indicate the loudness of the file, the
desired cue points, and so on.

2.2 Streaming

Once properly encoded, the streaming of audio data is generally not performed
directly by the stream generator (such as Liquidsoap) to the client, a streaming
server generally takes care of this. One reason to want separate tools is for
reliability: if the streaming server gets down at some point because too many au-
ditors connect simultaneously at some point, we still want the stream generator
to work so that the physical radio or the archiving are still operational.

Another reason is that this is a quite technical task. In order to be transported,
the streams have to be split in small packets in such a way that a listener can
easily start listening to a stream in the middle and can bear the loss of some
of them. Moreover, the time the data takes from the server to the client can
vary over time (depending on the load of the network or the route taken): in
order to cope with this, the clients do not play the received data immediately,
but store some of it in advance, so that they still have something to play if next
part of the stream comes late, this is called buffering. Finally, one machine is
never enough to face the whole internet, so we should have the possibility of
distributing the workload over multiple servers in order to handle large amounts
of simultaneous connections.

Icecast. Historically, Icecast was the main open-source server used in order
to serve streams over the internet. On a first connection, the client starts by
buffering audio (in order to be able to cope with possible slowdowns of the
network): Icecast therefore begins by feeding it up as fast as possible and then
sends the data at a peaceful rate. It also takes care of handling multiple stream
generators (which are called mountpoints in its terminology), multiple clients,
replayingmetadata (so that we have the title of the current song even if we started
listening to it in the middle), recording statistics, enforcing limits (on clients
or bandwidth), and so on. Icecast servers support relaying streams from other
servers, which is useful in order to distribute listening clients across multiple
physical machines, when many of them are expected to connect simultaneously.

2.3. AUDIO SOURCES 13

HLS. Until recently, the streaming model as offered by Icecast was predomi-
nant, but it suffers from two main drawbacks. Firstly, the connection has to be
kept between the client and the server for the whole duration of the stream,
which cannot be guaranteed in mobile contexts: when you connect with your
smartphone, you frequently change networks or switch between wifi and 4G
and the connection cannot be held during such events. In this case, the client
has to make a new connection to the Icecast server, which in practice induces
blanks and glitches in the audio for the listener. Another issue is that the data
cannot be cached as it is done for web traffic, where it helps to lower latencies
and bandwidth-related costs, because each connection can induce a different
response.

For these reasons, new standards such as hls (for http Live Stream) or dash
(for Dynamic Adaptive Streaming over http) have emerged, where the stream is
provided as a rolling playlist of small files called segments: a playlist typically
contains the last minute of audio split into segments of 2 seconds. Moreover,
the playlist can indicate multiple versions of the stream with various formats
and encoding qualities, so that the client can switch to a lower bitrate if the
connection becomes bad, and back to higher bitrates when it is better again,
without interrupting the stream: this is called adaptative streaming. Here, the
files are downloaded one by one, and are served by a usual http server. This
means that we can reuse all the technology developed for those to scale up and
improve the speed, such as load balancing and caching techniques typically
provided by content delivery networks. It seems that such formats will take
over audio distribution in the near future, and Liquidsoap already has support
for them. Their only drawback is that they are more recent and thus less well
supported on old clients, although this tends to be less and less the case.

RTMP. Finally, we would like to mention that, nowadays, streaming is more
and more being delegated to big online platforms, such as YouTube or Twitch,
because of their ease of use, both in terms of setup and of user experience. Those
often use another protocol, called rtmp (Real-Time Messaging Protocol), which
is more suited to transmitting live streams, where it is more important to keep
the latency low (i.e. transmit the information as close as possible to the instant
where it happened) than keep its integrity (dropping small parts of the audio or
video is considered acceptable). This protocol is quite old (it dates back to the
days where Flash was used to make animation on webpages) and tends to be
phased out in favor of hls.

2.3 Audio sources

In order to make a radio, one has to start with a primary source of audio. We
give examples of such below.

14 CHAPTER 2. THE TECHNOLOGY BEHIND STREAMS

Audio files. A typical radio starts with one or more playlists, which are lists of
audio files. These can be stored in various places: they can either be on a local
hard drive or on some distant server, and are identified using a uri (for Uniform
Resource Identifier) which can be a path to a local file or something of the form
http://some/server/file.mp3 which indicates that the file should be accessed
using the http protocol (some other protocols should also be supported). There
is a slight difference between local and distant files: in the case of local files,
we have pretty good confidence that they will always be available (or at least
we can check that this is the case), whereas for distant files the server might be
unavailable, or just very slow, so that we have to take care of downloading the
file in advance enough and be prepared to have fallback option in case the file is
not ready in time. Finally, audio files can be in various formats (as described in
section 2.1) and have to be decoded, which is why Liquidsoap depends on many
libraries, in order to support as many formats as possible.

Even in the case of local files, the playlist might be dynamic: instead of knowing
in advance the list of all the files, the playlist can consist of a queue of requests
made by users (e.g., via a website or a chatbot); we can even call a script which
will return the next song to be played, depending on whichever parameters (for
instance taking in account votes on a website).

Live inputs. A radio often features live shows. As in the old days, the speaker
can be in the same room as in the server, in which case the sound is directly
captured by a soundcard. But nowadays, live shows are made more and more
from home, where the speaker will stream its voice to the radio by himself, and
the radio will interrupt its contents and relay the stream. More generally, a radio
should be able to relay other streams along with their metadata (e.g. when a
program is shared between multiple radios) or other sources (e.g. a live YouTube
channel).

As for distant files, we should be able to cleanly handle failures due to network.
Another issue specific to live streams (as opposed to playlists) is that we do not
have control over time: this is an issue for operations such as crossfading (see
below) which requires shifting time and thus cannot be performed on realtime
sources.

Synchronization. In order to provide samples at a regular pace, a source of
sound has an internal clock which will tick regularly: each soundcard has a
clock, your computer has a clock, the live streams are generated by things which
have clocks. Now, suppose that you have two soundcards generating sound at
44100 Hz, meaning that their internal clocks both tick at 44100 Hz. Those are
not infinitely precise and it might be the case that there is a slight difference if 1
Hz between the two (maybe one is ticking at 44099.6 Hz and the other one at
44100.6 Hz in reality). Usually, this is not a problem, but on the long run it will
become one: this 1 Hz difference means that, after a day, one will be 2 seconds

2.4. AUDIO PROCESSING 15

in advance compared to the other. For a radio which is supposed to be running
for months, this will be an issue and the stream generator has to take care of
that, typically by using buffers. This is not a theoretical issue: first versions
of Liquidsoap did not carefully handle this and we did experience quite a few
problems related to it.

2.4 Audio processing

Resampling. As explained in section 2.1, various files have various sampling
rates. For instance, suppose that your radio is streaming at 48 kHz and that you
want to play a file at 44.1 kHz. You will have to resample your file, i.e. change its
sampling rate, which, in the present case, means that you will have to come up
with new samples. There are various simple strategies for this such as copying
the sample closest to a missing one, or doing a linear interpolation between
the two closest. This is what Liquidsoap is doing if you don’t have the right
libraries enabled and, believe it or not (or better try it!), it sounds quite bad.
Resampling is a complicated task to get right, and can be costly in terms of
cpu if you want to achieve good quality. Whenever possible Liquidsoap uses
libsamplerate library to achieve this task, which provides much better results
than the naive implementation.

Normalization. The next thing you want to do is to normalize the sound,
meaning that you want to adjust its volume in order to have roughly the same
audio loudness between tracks: if they come from different sources (such as two
different albums by two different artists) this is generally not the case.

A strategy to fix that is to use automatic gain control: the program can regularly
measure the current audio loudness based, say, on the previous second of sound,
and increase or decrease the volume depending on the value of the current level
compared to the target one. This has the advantage of being easy to set up
and providing a homogeneous sound. However, while it is quite efficient when
having voice over the radio, it is quite unnatural for music: if a song has a quiet
introduction for instance, its volume will be pushed up and the song as a whole
will not sound as usual.

Another strategy for music consists in pre-computing the loudness of each file. It
can be performed each time a song is about to be played, but it is much more effi-
cient to compute this in advance and store it as a metadata: the stream generator
can then adjust the volume on a per-song basis based on this information. The
standard for this way of proceeding is ReplayGain and there are a few efficient
tools to achieve this task. It is also more natural than basic gain control, because
it takes in account the way our ears perceive sound in order to compute loudness.

At this point, we should also indicate that there is a subtlety in the way we
measure volume (and loundness). It can either be measured linearly, i.e. we

16 CHAPTER 2. THE TECHNOLOGY BEHIND STREAMS

indicate the amplification coefficient by which we should multiply the sound, or
in decibels. The reason for having the two is that the first is more mathematically
pleasant, whereas the second is closer to the way we perceive the sound. The re-
lationship between linear l and decibel d measurements is not easy, the formulas
relating the two are d=20 log10(l) and l=10d/20. If your math classes are too far
away, you should only remember that 0 dB means no amplification (we multiply
by the amplification coefficient 1), adding 6 dB corresponds to multiplying by 2,
and removing 6 dB corresponds to dividing by 2:

decibels -12 -6 0 6 12 18
amplification 0.25 0.5 1 2 4 8

This means that an amplification of -12 dB corresponds to multiplying all the
samples of the sound by 0.25, which amounts to dividing them by 4.

Transitions between songs. In order to ease the transition between songs, one
generally uses crossfading, which consists in fading out one song (progressively
lowering its volume to 0) while fading in the next one (progressively increasing
its volume from 0). A simple approach can be to crossfade for, say, 3 seconds
between the end of a song and a beginning of the next one, but serious people
want to be able to choose the length and type of fading to apply depending on
the song. And they also want to have cue points, which are metadata indicating
where to start a song and where to end it: a long intro of a song might not be
suitable for radio broadcasting and we might want to skip it. Another common
practice when performing transitions between the tracks consists in adding
jingles: those are short audio tracks generally saying the name of the radio or
of the current show. In any way, people avoid simply playing one track after
another (unless it is an album) because it sounds awkward to the listener: it
does not feel like a proper radio, but rather like a simple playlist.

Equalization. The final thing youwant to do is to give your radio an appreciable
and recognizable sound. This can be achieved by applying a series of sound
effects such as

• a compressor which gives a more uniform sound by amplifying quiet
sounds,

• an equalizer which gives a signature to your radio by amplifying differently
different frequency ranges (typically, simplifying a bit, you want to insist
on bass if you play mostly lounge music in order to have a warm sound,
or on treble if you have voices in order for them to be easy to understand),

• a limiter which lowers the sound when there are high-intensity peaks (we
want to avoid clipping),

• a gate which reduce very low level sound in order for silence to be really
silence and not low noise (in particular if you capture a microphone),

2.5. INTERACTION 17

• and so on.

These descriptions are very rough and we urge the reader not accustomed to
those basic components of signal processing to learn more about them. You will
need those at some point of you want to make a professional sounding webradio.

The processing loop. Because we generally want to perform all those opera-
tions on audio signals, the typical processing loop will consist in

1. decoding audio files,
2. processing the audio (fading, equalizing, etc.),
3. encoding the audio,
4. streaming encoded audio.

If for some reason we do not want to perform any audio processing (for instance,
if this processing was done offline, or if we are relaying some already processed
audio stream) and if the encoding format is the same as the source format, there
is no need to decode and then reencode the sound: we can directly stream the
original encoded files. By default, Liquidsoap will always reencode files but this
can be avoided if we want, see section 6.7.

2.5 Interaction

What we have described so far is more or less the direct adaptation of traditional
radio techniques to the digital world. But with new tools come new usages, and
a typical webradio generally requires more than the above features. In particular,
we should be able to interact with other programs and services.

Interacting with other programs. Whichever tool you are going to use in
order to generate your webradio, it is never going to support all the features
that a user will require. At some point, the use of an obscure hardware interface,
a particular database, or a specific web framework will be required by a client,
which will not be supported out of the shelf by the tool. Or maybe you simply
want to be able to reuse parts of the scripts that you spent years to write in your
favorite language.

For this reason, a stream generator should be able to interact with other tools,
by calling external programs or scripts, written in whichever language. For
instance, we should be able to handle dynamic playlists, which are playlists
where the list of songs is not determined in advance, but rather generated on the
fly: each time a song ends a function of the generator or an external program
computes the next song to be played.

We should also be able to easily import data generated by other programs, the
usual mechanism being by reading the standard plain text output of the executed
program. This means that we should also have tools to parse and manipulate

18 CHAPTER 2. THE TECHNOLOGY BEHIND STREAMS

this standard output. Typically, structured data such as the result of a query on
a database can be output in standard formats such as json, for which we should
have support.

Finally, we should be able to interact with some more specific external programs,
such as for monitoring scripts (in order to understand its state and be quickly
notified in case of a problem).

Interacting with other services. The above way of interacting works in pull

mode: the stream generators asks an external program for information, such as
the next song to be played. Another desirable workflow is in push mode, where
the program adds information whenever it feels like. This is typically the case
for request queues which are a variant of playlists, where an external programs
can add songs whenever it feels like: those will be played one, in the order where
they were inserted. This is typically used for interactive websites: whenever a
user asks for a song, it gets added to the request queue.

Push mode interaction is also commonly used for controllers, which are physical
or virtual devices consisting of push buttons and sliders, that one can use in order
to switch between audio sources, change the volume of a stream, and so on. The
device generally notifies the stream generator when some control gets changed,
which should then react accordingly. The commonly used standard nowadays
for communicating with controllers is called osc (Open Sound Control).

2.6 Video streams

The workflow for generating video streams is not fundamentally different from
the one that we have described above, so that it is natural to expect that an audio
stream generator can also be used to generate video streams. In practice, this
is rarely the case, because manipulating video is an order of magnitude harder
to implement. However, the advanced architecture of Liquidsoap allows it to
handle both audio and video. The main focus of this book will be audio streams,
but chapter 7 is dedicated to handling video.

Video data. The first thing to remark is that if processing and transmitting
audio requires handling large amounts of data, video requires processing huge
amounts of data. A video in a decent resolution has 25 images per second at
a resolution of 720p, which means 1280×720 pixels, each pixel consisting of
three channels (generally, red, green and blue, or rgb for short) each of which is
usually coded on one byte. This means that one second of uncompressed video
data weights 65 MB, the equivalent of more than 6 minutes of uncompressed
audio in cd quality! And these are only the minimal requirements for a video
to be called HD (High Definition), which is the kind of video which is being
watched everyday on the internet: in practice, even low-end devices can produce
much higher resolutions than this.

2.6. VIDEO STREAMS 19

This volume of data means that manipulation of video, such as combining videos
or applying effects, should be coded very efficiently (by which we mean down to
fine-tuning the assembly code for some parts), otherwise the stream generator
will not be able to apply them in realtime on a standard recent computer. It
also means that even copying of data should be avoided, the speed of memory
accesses is also a problem at such rates.

A usual video actually consists of two streams: one for the video and one for
the audio. We want to be able to handle them separately, so that we can apply
all the operations specific to audio described in previous sections to videos, but
the video and audio stream should be kept in perfect sync (even a very small
delay between audio is video can be noticed).

File formats. We have seen that there is quite a few compressed formats
available for audio and the situation is the same for video, but the video codecs
generally involve many configuration options exploiting specificities of video,
such as the fact two consecutive images in a video are usually quite similar.
Fortunately, most of the common formats are handled by high-level libraries
such as FFmpeg. This solves the problem for decoding, but for encoding we are
still left with many parameters to specify, which can have a large impact on the
quality of the encoded video and on the speed of the compression (finding the
good balance is somewhat of an art).

Video effects. As for audio, many manipulations of video files are expected to
be present in a typical workflow.

• Fading: as for audio tracks, we should be able to fade between successive
videos, this can be a smooth fade, or one video slides on top of the other,
and so on.

• Visual identity: we should be able to add the logo of our channel, add
a sliding text at the bottom displaying the news or listing the shows to
come.

• Color grading: as for audio tracks, we should be able to give a particular
ambiance by having uniform colors and intensities between tracks.

20 CHAPTER 2. THE TECHNOLOGY BEHIND STREAMS

21

3
Installation

In order to install Liquidsoap you should either download compiled binaries for
your environment, or compile it by yourself. The latest is slightly more involved,
although it is a mostly automated process, but it allows to easily obtain a cutting-
edge version and take part of the development process. These instructions are
for the latest released version at the time of the writing, you are encouraged to
consult the online documentation.

3.1 Automated building using opam

The recommended method to install Liquidsoap is by using the package man-
ager opam2. This program, which is available on all major distributions and
architectures, makes it easy to build programs written in OCaml by installing
the required dependencies (the libraries the program needs to be compiled) and
managing consistency between various versions (in particular, it takes care of
recompiling all the affected programs when a library is installed or updated).
Any user can install packages with opam, no need to be root: the files it installs
are stored in a subdirectory of the home directory, named .opam. The opam
packages for Liquidsoap and associated libraries are actively maintained.

Installing opam. The easiest way to install opam on any achitecture is by
running the command

sh <(curl -sL https://git.io/fjMth)

or by installing the opam package with the package manager of your distribution,
e.g., for Ubuntu,

2http://opam.ocaml.org/

http://opam.ocaml.org/

22 CHAPTER 3. INSTALLATION

sudo apt install opam

or by downloading the binaries from the opam website1. In any case, you should
ensure that you have at least the version 2.0.0 of opam: the version number can
be checked by running opam --version.

If you are installing opam for the first time, you should initialize the list of opam
packages with

opam init

You can answer yes to all the questions it asks (if it complains about the absence
of bwrap, either install it or add the flag --disable-sandboxing to the above
command line). Next thing, you should install a recent version of the OCaml
compiler by running

opam switch create 4.13.0

It does take a few minutes, because it compiles OCaml, so get prepared to have
a coffee.

Installing Liquidsoap. Once this is done, a typical installation of Liquidsoap
with support for mp3 encoding/decoding and Icecast is done by executing:

opam depext taglib mad lame cry samplerate liquidsoap

opam install taglib mad lame cry samplerate liquidsoap

The first line (opam depext ...) takes care of installing the required external
dependencies, i.e., the libraries we are relying on, but did not develop by our-
selves. Here, we want to install the dependencies required by taglib (the library
to read tags in audio files), mad (to decode mp3), lame (to encode mp3), cry (to
stream to Icecast), samplerate (to resample audio) and finally liquidsoap. The
second line (opam install ...) actually install the libraries and programs. Here
also, the compilation takes some time (around a minute on a recent computer).

Most of Liquidsoap’s dependencies are only optionally installed by opam. For
instance, if you want to enable ogg/vorbis encoding and decoding after you’ve
already installed Liquidsoap, you should install the vorbis library by executing:

opam depext vorbis

opam install vorbis

Opam will automatically detect that this library can be used by Liquidsoap and
will recompile it which will result in adding support for this format in Liquidsoap.
The list of all optional dependencies that you may enable in Liquidsoap can be
obtained by typing

opam info liquidsoap

1http://opam.ocaml.org/doc/Install.html

http://opam.ocaml.org/doc/Install.html

3.2. USING BINARIES 23

and is detailed below.

Installing the cutting-edge version. The version of Liquidsoap which is
packaged in opam is the latest release of the software. However, you can also
install the cutting-edge version of Liquidsoap, for instance to test upcoming
features. Beware that it might not be as stable as a release, although this is
generally the case: our policy enforces that the developments in progress are
performed apart, and integrated into the main branch only once they have been
tested and reviewed.

In order to install this version, you should first download the repository con-
taining all the code, which is managed using the git version control system:

git clone https://github.com/savonet/liquidsoap.git

This will create a liquidsoap directory with the sources, and you can then
instruct opam to install Liquidsoap from this directory with the following com-
mands:

opam pin add liquidsoap .

From time to time you can update your version by downloading the latest code
and then asking opam to rebuild Liquidsoap:

git pull

opam upgrade liquidsoap

Updating libraries. If you also need a recent version of the libraries in the Liq-
uidsoap ecosystem, you can download all the libraries at once by typing

git clone https://github.com/savonet/liquidsoap-full.git

cd liquidsoap-full

make init

make update

You can then update a given library (say, ocaml-ffmpeg) by going in its directory
and pinning it with opam, e.g.

cd ocaml-ffmpeg

opam pin add .

(and answer yes if you are asked questions).

3.2 Using binaries

If you want to avoid compiling Liquidsoap, or if opam is not working on your
platform, the easiest way is to use precompiled binaries of Liquidsoap, if available.

24 CHAPTER 3. INSTALLATION

Linux. There are packages for Liquidsoap in most Linux distributions. For
instance, in Ubuntu or Debian, the installation can be performed by running

sudo apt install liquidsoap

which will install the liquidsoap package, containing the main binaries. It comes
equipped with most essential features, but you can install plugins in the packages
liquidsoap-plugin-... to have access to more libraries; for instance, installing
liquidsoap-plugin-flac will add support for the flac lossless audio format or
liquidsoap-plugin-all will install all available plugins (which might be a good
idea if you are not sure about which you are going to need).

macOS. No binaries are provided for macOS, the preferred method is opam, see
above.

Windows. Pre-built binaries are provided on the releases pages1 in a file with
a name of the form liquidsoap-vN.N.N-win64.zip. It contains directly the pro-
gram, no installer is provided at the moment.

3.3 Building from source

In some cases, it is necessary to build directly from source (e.g., if opam is not
supported on your exotic architecture or if you want to modify the source code
of Liquidsoap). This can be a difficult task, because Liquidsoap relies on an
up-to-date version of the OCaml compiler, as well as a bunch of OCaml libraries
and, for most of them, corresponding C library dependencies.

Installing external dependencies. In order to build Liquidsoap, you first need
to install the following OCaml libraries: ocamlfind, sedlex, menhir, pcre and
camomile. You can install those using your package manager

sudo apt install ocaml-findlib libsedlex-ocaml-dev menhir

libpcre-ocaml-dev libcamomile-ocaml-dev↪→

(as you can remark, OCaml packages for Debian or Ubuntu often bear names of
the form libxxx-ocaml-dev), or using opam

opam install ocamlfind sedlex menhir pcre camomile

or from source.

Getting the sources of Liquidsoap. The sources of Liquidsoap, along with the
required additional OCaml libraries wemaintain can be obtained by downloading
themain git repository, and then run scripts whichwill download the submodules
corresponding to the various libraries:

1https://github.com/savonet/liquidsoap/releases

https://github.com/savonet/liquidsoap/releases

3.4. DOCKER IMAGE 25

git clone https://github.com/savonet/liquidsoap-full.git

cd liquidsoap-full

make init

make update

Installing. Next, you should copy the file PACKAGES.default to PACKAGES and
possibly edit it: this file specifies which features and libraries are going to
be compiled, you can add/remove those by uncommenting/commenting the
corresponding lines. Then, you can generate the configure scripts:

./bootstrap

and then run them:

./configure

This script will check that whether the required external libraries are available,
and detect the associated parameters. It optionally takes parameters such as
--prefix which can be used to specify in which directory the installation should
be performed. You can now build everything

make

and then proceed to the installation

make install

You may need to be root to run the above command in order to have the right to
install in the usual directories for libraries and binaries.

3.4 Docker image

Docker1 images are provided as savonet/liquidsoap: these are Debian-based
images with Liquidsoap pre-installed (and not much more in order to have a file
as small as possible), which you can use to easily and securely deploy scripts
using it. The tag main always contains the latest version, and is automatically
generated after each modification.

We refer the reader to the Docker documentation for the way such images can
be used. For instance, you can have a shell on such an image with

docker run -it --entrypoint /bin/bash savonet/liquidsoap:main

By default, the docker image does not have access to the soundcard of the local
computer (but it can still be useful to stream over the internet for instance). It is
however possible to bind the alsa soundcard of the host computer inside the
image. For instance, you can play a sine (see section 4.1) by running:

1https://www.docker.com/

https://www.docker.com/

26 CHAPTER 3. INSTALLATION

docker run -it -v /dev/snd:/dev/snd --privileged

savonet/liquidsoap:main liquidsoap 'output.alsa(sine())'↪→

This single line should work on any computer on which Docker is installed:
no need to install opam, various libraries, or Liquidsoap, it will automatically
download for you an image where all this is pre-installed (if it does not work, this
probablymeans that docker does not have the rights to access the sound device lo-
cated at /dev/snd, in which case passing the additional option --group-add=audio

should help).

3.5 Libraries used by Liquidsoap

We list below some of the libraries which can be used by Liquidsoap. They are
detected during the compilation of Liquidsoap and, in this case, support for the
libraries is added. We recall that a library ocaml-something can be installed via
opam with

sudo opam depext something

sudo opam install something

which will automatically trigger a rebuild of Liquidsoap, as explained in sec-
tion 3.1.

General. Those libraries add support for various things:

• camomile: charset recoding in metadata (those are generally encoded in
utf-8 which can represent all characters, but older files used various
encodings for characters which can be converted),

• ocaml-inotify: getting notified when a file changes (e.g. for reloading a
playlist when it has been updated),

• ocaml-magic: file type detection (e.g. this is useful for detecting that a file
is an mp3 even if it does not have the .mp3 extension),

• ocaml-lo: osc (Open Sound Control) support for controlling the radio
(changing the volume, switching between sources) via external interfaces
(e.g. an application on your phone),

• ocaml-ssl: ssl support for connecting to secured websites (using the
https protocol),

• ocaml-tls: similar to ocaml-ssl,
• ocurl: downloading files over http,
• osx-secure-transport: ssl support via OSX’s SecureTransport,
• yojson: parsing json data (useful to exchange data with other applica-
tions).

Input / output. Those libraries add support for using soundcards for playing
and recording sound:

3.5. LIBRARIES USED BY LIQUIDSOAP 27

• ocaml-alsa: soundcard input and output with alsa,
• ocaml-ao: soundcard output using ao,
• ocaml-ffmpeg: input and output over various devices,
• ocaml-gstreamer: input and output over various devices,
• ocaml-portaudio: soundcard input and output,
• ocaml-pulseaudio: soundcard input and output.

Among those, PulseAudio is a safe default bet. alsa is very low level and is
probably the one you want to use in order to minimize latencies. Other libraries
support a wider variety of soundcards and usages.

Other outputs:

• ocaml-cry: output to Icecast servers,
• ocaml-bjack: jack support for virtually connecting audio programs,
• ocaml-lastfm: Last.fm scrobbling (this website basically records the songs
you have listened),

• ocaml-srt: transport over network using srt protocol.

Sound processing. Those add support for sound manipulation:

• ocaml-dssi: sound synthesis plugins,
• ocaml-ladspa: sound effect plugins,
• ocaml-lilv: sound effect plugins,
• ocaml-samplerate: samplerate conversion in audio files,
• ocaml-soundtouch: pitch shifting and time stretching.

Audio file formats.

• ocaml-faad: aac decoding,
• ocaml-fdkaac: aac+ encoding,
• ocaml-ffmepg: encoding and decoding of various formats,
• ocaml-flac: Flac encoding and decoding,
• ocaml-gstreamer: encoding and decoding of various formats,
• ocaml-lame: mp3 encoding,
• ocaml-mad: mp3 decoding,
• ocaml-ogg: Ogg containers,
• ocaml-opus: Ogg/Opus encoding and decoding,
• ocaml-shine: fixed-point mp3 encoding,
• ocaml-speex: Ogg/Speex encoding and decoding,
• ocaml-taglib: metadata decoding,
• ocaml-vorbis: Ogg/Vorbis encoding and decoding.

Playlists.

• ocaml-xmlplaylist: support for playlist formats based on xml.

28 CHAPTER 3. INSTALLATION

Video. Video conversion:

• ocaml-ffmpeg: video conversion,
• ocaml-gavl: video conversion,
• ocaml-theora: Ogg/Theora encoding and decoding.

Other video-related libraries:

• camlimages: decoding of various image formats,
• gd4o: rendering of text,
• ocaml-frei0r: video effects,
• ocaml-imagelib: decoding of various image formats,
• ocaml-sdl: display, text rendering and image formats.

Memory. Memory usage is sometimes an issue with some scripts:

• ocaml-jemalloc: support for jemalloc memory allocator which can avoid
memory fragmentation and lower the memory footprint,

• ocaml-memtrace: support for tracing memory allocation in order to under-
stand where memory consumption comes from,

• ocaml-mem_usage: detailed memory usage information.

Runtime dependencies. Those optional dependencies can be used by Liquid-
soap if installed, they are detected at runtime and do not require any particular
support during compilation:

• awscli: s3:// and polly:// protocol support for Amazon web servers,
• curl: downloading files with http, https and ftp protocols,
• ffmpeg: external input and output, replay_gain, level computation, and
more,

• youtube-dl: YouTube video and playlist downloading support.

29

4
Setting up a simple radio station

4.1 The sound of a sine wave

Our first sound. In order to test your installation, you can try the following in
a console:

liquidsoap 'output(sine())'

This instructs Liquidsoap to run the program

output(sine())

which plays a sine wave at 440 Hertz. The operator sine is called a source: it
generates audio (here, a sine wave) and output is an operator which takes a
source as parameter and plays it on the soundcard. When running this program,
you should hear the expected well-known sound and see lots of lines looking
like this:

2021/02/18 15:20:44 >>> LOG START

2021/02/18 15:20:43 [main:3] Liquidsoap 2.0.0

...

These are the logs for Liquidsoap, which are messages describing what each
operator is doing. These are often useful to follow what the script is doing, and
contain important information in order to understand what is going wrong if it
is the case. Each of these lines begins with the date and the hour the message
was issued, followed by who emitted the message (i.e. which operator), its
importance, and the actual message. For instance, [main:3]means that the main
process of Liquidsoap emitted the message and that its importance is 3. The
lower the number is, the more important the message is: 1 is a critical message
(the program might crash after that), 2 a severe message (something that might

30 CHAPTER 4. SETTING UP A SIMPLE RADIO STATION

affect the program in a deep way), 3 an important message, 4 an information and
5 a debug message (which can generally be ignored). By default, only messages
with importance up to 3 are displayed.

Scripts. You will soon find out that a typical radio takes more than one line
of code, and it is not practical to write everything on the command line. For
this reason, the code for describing your webradio can also be put in a script,
which is a file containing all the code for your radio. For instance, for our sine
example, we can put the following code in a file radio.liq:

#!/usr/bin/env liquidsoap

Let's play a sine wave

output(sine())

The first line says that the script should be executed by Liquidsoap. It begins by
#! (sometimes called a shebang) and then says that /usr/bin/env should be used
in order to find the path for the liquidsoap executable. If you know its complete
path (e.g. /usr/bin/liquidsoap) you could also directly put it:

#!/usr/bin/liquidsoap

In the rest of the book, we will generally omit this first line, since it is always
the same. The second line of radio.liq, is a comment. You can put whatever
you want here: as long as the line begins with #, it will not be taken in account.
The last line is the actual program we already saw above.

In order to execute the script, you should ensure that the program is executable
with the command

chmod +x radio.liq

and you can then run it with

./radio.liq

which should have the same effect as before. Alternatively, the script can also
be run by passing it as an argument to Liquidsoap

liquidsoap radio.liq

in which case the first line (starting with #!) is not required.

Variables. In order to have more readable code, one can use variables which
allow giving names to sources. For instance, we can give the name s to our sine
source and then play it. The above code is thus equivalent to

s = sine()

output(s)

4.1. THE SOUND OF A SINE WAVE 31

Parameters. In order to investigate further the possible variations on our
example, let us explore the parameters of the sine operator. In order to obtain
detailed help about this operator, we can type, in a console,

liquidsoap -h sine

which will output

Generate a sine wave.

Type: (?id : string, ?amplitude : float, ?float) ->

source(audio=internal('a), video=internal('b), midi=internal('c))↪→

Category: Source / Input

Parameters:

* id : string (default: "")

Force the value of the source ID.

* amplitude : float (default: 1.0)

Maximal value of the waveform.

* (unlabeled) : float (default: 440.0)

Frequency of the sine.

(this information is also present in the online documentation1).

It begins with a description of the operator, followed by its type, category and
arguments (or parameters). There is also a section for methods, which is not
shown above, but we simply ignore it for now, it will be detailed in section 5.6.
Here, we see in the type that it is a function, because of the presence of the arrow
“->”: the type of the arguments is indicated on the left of the arrow and the
type of the output is indicated on the right. More precisely, we see that it takes
three arguments and returns a source with any number of audio, video and midi
channels (the precise meaning of source is detailed in section 8.1). The three
arguments are indicated in the type and detailed in the following Parameters

section:

• the first argument is a string labeled id: this is the name which will be
displayed in the logs,

• the second is a float labeled amplitude: this controls how loud the gener-
ated sine wave will be,

• the third is a float with no label: the frequency of the sine wave.

All three arguments are optional, which means that a default value is provided
and will be used if it is not specified. This is indicated in the type by the question

1https://www.liquidsoap.info/doc-dev/reference.html

https://www.liquidsoap.info/doc-dev/reference.html

32 CHAPTER 4. SETTING UP A SIMPLE RADIO STATION

mark “?” before each argument, and the default value is indicated in Parameters

(e.g. the default amplitude is 1.0 and the default frequency is 440. Hz).

If we want to generate a sine wave of 2600 Hz with an amplitude of 0.8, we can
thus write

s = sine(id="my_sine", amplitude=0.8, 2600.)

output(s)

Note that the parameter corresponding to id has a label id, which we have to
specify in order to pass the corresponding argument, and similarly for amplitude,
whereas there is no label for the frequency.

Finally, just for fun, we can hear an A minor chord by adding three sines:

s1 = sine()

s2 = sine(440. * pow(2., 3. / 12.))

s3 = sine(440. * pow(2., 7. / 12.))

s = add([s1, s2, s3])

output(s)

We generate three sines at frequencies 440 Hz, 440×23/12 Hz and 440×27/12 Hz,
adds them, and plays the result. The operator add is taking as argument a list
of sources, delimited by square brackets, which could contain any number of
elements.

4.2 A radio

Playlists and more. Since we are likely to be here not to make synthesizers
but rather radios, we should start playing actual music instead of sines. In order
to do so, we have the playlist operator which takes as argument a playlist: it
can be a file containing paths to audio files (wav, mp3, etc.), one per line, or a
playlist in a standard format (pls, m3u, xspf, etc.), or a directory (in which case
the playlist consists of all the files in the directory). For instance, if our music is
stored in the ~/Music directory, we can play it with

s = playlist("~/Music")

output(s)

As usual, the operator playlist has a number of interesting optional parame-
ters which can be discovered with liquidsoap -h playlist. For instance, by
default, the files are played in a random order, but if we want to play them as
indicated in the list we should pass the argument mode="normal" to playlist.
Similarly, if we want to reload the playlist whenever it is changed, the argument
reload_mode="watch" should be passed.

A playlist can refer to distant files (e.g. urls of the form http://path/to/file.mp3)
in which case they are going to be downloaded beforehand. If you want to use a

4.2. A RADIO 33

live stream, which can be very long or even infinite, the operator input.http
should be used instead:

s = input.http("https://icecast.radiofrance.fr/fip-hifi.aac")

output(s)

The playlist can also mention special sort of files, using particular protocols
which are proper to Liquidsoap: those do not refer to actual files, but rather
describe how to produce files. For instance, a line of the form

say:Hello everybody!

in a playlist will instruct Liquidsoap to use a text-to-speech program in order to
generate a file in which “Hello everybody!” is pronounced.

Finally, there are other types of inputs. For instance, the operator input.alsa
can be used to capture the sound of a microphone on a soundcard, with the alsa
library. This means that you should be able to hear your voice with

s = buffer(input.alsa())

output(s)

The alsa input and the output each have their own way of synchronizing with
time: in our terminology, we say that they have different clocks, see section 6.10.
This will be detected by Liquidsoap an a script such as

output(input.alsa())

will be rejected. This is the reason why we need to use the buffer operator here
which will compute part of the input stream in advance (1 second by default) and
will therefore be able to cope with small discrepancies in the way the operators
synchronize. If you try the above example, you can hear that there is a slight
delay between your voice and the output due to the buffering.

Fallible sources and fallbacks. Some sources are not always available, and
we say that such a source is fallible. A typical example is a source obtained
by input.http: at some point the stream might stop (e.g. if it is only available
during daytime), or be subject to technical difficulties (e.g. it gets disconnected
from the internet for a short period of time). In this case, we generally want to
fall back to another source, typically an emergency playlist consisting of local
files which we are sure are going to be available. This can be achieved by using
the fallback operator which plays the first available source in a list of sources:

stream = input.http("http://...")

emergency = playlist("~/Music")

s = fallback([stream, emergency])

output(s)

This means that s will have the same contents as stream if it is available, and as
emergency otherwise.

34 CHAPTER 4. SETTING UP A SIMPLE RADIO STATION

Fallibility detection. Liquidsoap automatically detects that a source is fallible
and issues an error if this is not handled, by a fallback for instance, in order to
make sure that we will not unexpectedly have nothing to stream at some point.
We did not see this up to now because output is an advanced operator which
automatically uses silence as fallback, because it is primarily intended for quick
and dirty checking of the stream. However, if we use the primitive functions for
outputting audio, we will be able to observe this behavior. For instance, if we
try to use the operator output.pulseaudio, which plays a source on a soundcard
using the PulseAudio library,

s = input.http("http://...")

output.pulseaudio(s)

we obtain the following error:

At line 1, char 4-27:

Error 7: Invalid value: That source is fallible

This means that Liquidsoap has detected that the source declared at line 1 from
character 4 to character 27, i.e. the input.http, is fallible. We could simply ignore
this warning, by passing the parameter fallible=true to the output.pulseaudio
operator, but the proper way to fix this consists in having a fallback to a local
file:

s = input.http("http://...")

emergency = single("/radio/emergency.mp3")

s = fallback(track_sensitive=false, [s, emergency])

output.pulseaudio(s)

Note that we are using single here instead of playlist: this operator plays a
single file and ensures that the file is available before running the script so that
we know it will not fail. The argument track_sensitive=false means that we
want to get back to the live stream as soon as it is available again, otherwise it
would wait the end of the track for switching back from emergency playlist to
the main radio. Also remark that we are defining s twice: this is not a problem
at all, whenever we reference s, the last definition is used, otherwise said the
second definition replaces the first.

Falling back to blank. Another option to make the stream infallible would be
to fall back to silence, which in Liquidsoap can be generated with the operator
blank:

s = input.http("http://...")

s = fallback(track_sensitive=false, [s, blank()])

output.pulseaudio(s)

This behavior is so common that Liquidsoap provides the mksafe function which
does exactly that:

4.2. A RADIO 35

s = buffer(input.http("http://..."))

s = mksafe(s)

output.pulseaudio(s)

Streams depending on the hour. A typical radio will do some scheduling,
typically by having different playlists at different times of the day. In Liquidsoap,
this is achieved by using the switch operator: this operator takes a list of pairs
consisting of a predicate (a function returning a boolean true or false) and a
source, and plays the first source for which the predicate is true. For time, there
is a special syntax:

{ 8h-20h }

is a predicate which is true when the current time is between 8h and 20h (or 8
am and 8 pm if you like this better). This means that if we have two playlists,
one for the day and one for the night, and want a live show between 19h and
20h, we can set this up as follows:

day = playlist("/radio/day.pls") # Day music

night = playlist("/radio/night.pls") # Night music

mic = buffer(input.alsa()) # Microphone

radio = switch([({8h-19h}, day), ({19h-20h}, mic), ({20h-8h}, night)])

By default, the switch operator will wait for the end of the track of a source
before switching to the next one, but immediate switching can be achieved by
adding the argument track_sensitive=false, as for the fallback operator.

Jingles. The next thing we want to be able to do is to insert jingles. We suppose
that we have a playlist consisting of all the jingles of our radio and we want to
play roughly one jingle every 5 songs. This can be achieved by using the random
operator:

jingles = playlist("/radio/jingles.pls")

radio = random(weights=[1, 4], [jingles, radio])

This operator randomly selects a track in a list of sources each time a new track
has to be played (here this list contains the jingles playlist and the radio defined
above). The weight argument says how many tracks of each source should be
taken in average: here we want to take 1 jingle for 4 radio tracks. The selection
is randomized however and it might happen that two jingles are played one
after the other, although this should be rare. If we want to make sure that we
play 1 jingle and then exactly 4 radio songs, we should use the rotate operator
instead:

radio = rotate(weights=[1, 4], [jingles, radio])

Crossfading. Now that we have our basic sound production setup, we should
try to make things sound nicer. A first thing we notice is that the transition

36 CHAPTER 4. SETTING UP A SIMPLE RADIO STATION

between songs is quite abrupt whereas we would rather have a smooth chaining
between two consecutive tracks. This can be addressed using the crossfade

operator which will take care of this for us. If we insert the following line

radio = crossfade(fade_out=3., fade_in=3., duration=5., radio)

at each end of track the song will fade out during 3 seconds, the next track will
fade in for 3 seconds and the two will overlap during 5 seconds, ensuring a
pleasant transition.

Audio effects. In order to make the sound more uniform, we can use plugins.
For instance, the normalize operator helps you to have a uniform volume by
dynamically changing it, so that volume difference between songs is barely
heard:

radio = normalize(radio)

In practice, it is better to precompute the gain of each audio track in advance
and change the volume according to this information, often called ReplayGain,
see section 6.5. There are also various traditional sound effects that can be used
in order to improve the overall color and personality of the sound. A somewhat
reasonable starting point is provided by the nrj operator:

radio = nrj(radio)

Many more details about sound processing are given in section 6.5.

Icecast output. Now that we have set up our radio, we could play it locally by
adding

output(radio)

at the end of the script, but we would rather stream it to the world instead of
having it only on our speakers.

Installing Icecast. In order to do so, we first need to set up an Icecast server which
will relay the stream to users connecting to it. The way you should proceed
with its installation depends on your distribution, for instance on Ubuntu you
can type

sudo apt install icecast2

The next thing we should do is to modify the configuration which is generally
located in the file /etc/icecast2/icecast.xml. In particular, we should modify
the lines

<source-password>hackme</source-password>

<relay-password>hackme</relay-password>

<admin-password>hackme</admin-password>

4.2. A RADIO 37

which are the passwords for sources (e.g. the one Liquidsoap is going to use in
order to send its stream to Icecast), for relays (used when relaying a stream, you
are not going to use this one now but still want to change the password) and
for the administrative interface. By default, all three are hackme, and we will
use that in our examples, but, again, you should change them in order not to be
hacked. Have a look at other parameters though, they are interesting too! Once
the configuration modified, you should the restart Icecast with the command

sudo /etc/init.d/icecast2 restart

If you are on a system such as Ubuntu, the default configuration prevents Icecast
from running, because they want to ensure that you have properly configured
it. In order to enable it, before restarting, you should set

ENABLE=true

at the end of the file /etc/default/icecast2. More information about setting up
Icecast can be found on its website1.

Icecast output. Once this is set up, you should add the following line to your
script in order to instruct Liquidsoap to send the stream to Icecast:

output.icecast(%mp3, host="localhost", port=8000,

password="hackme", mount="my-radio.mp3", radio)

The parameters of the operator output.icecast we used here are

• the format of the stream: here we encode as mp3,
• the parameters of your Icecast server: hostname, port (8000 is the default
port) and password for sources,

• the mount point: this will determine the url of your stream,
• and finally, the source we want to send to Icecast, radio in our case.

If everything goes on well, you should be able to listen to your radio by going
to the url

http://localhost:8000/my-radio.mp3

with any modern player or browser. If you want to see the number of listeners
of your stream and other useful information, you should have a look at the stats
of Icecast, which are available at

http://localhost:8000/admin/stats.xsl

with the login for administrators (admin / hackme by default).

The encoder. The first argument %mp3, which controls the format, is called an
encoder and can itself be passed some arguments in order to fine tune the
encoding. For instance, if we want our mp3 to have a 256k bitrate, we should

1http://www.icecast.org

http://www.icecast.org

38 CHAPTER 4. SETTING UP A SIMPLE RADIO STATION

pass %mp3(bitrate=256). It is perfectly possible to have multiple streams with
different formats for a single radio: if we want to also have an aac stream we
can add the line

output.icecast(%fdkaac, host="localhost", port=8000,

password="hackme", mount="my-radio.aac", radio)

By the way, support for aac is not built in in the default installation. If you get
the message

Error 12: Unsupported format!

You must be missing an optional dependency.

this means that you did not enable it. In order to do so in an opam installation,
you should type

opam depext fdkaac

opam install fdkaac

Summing up. The typical radio script we arrived at is the following one:

#!/bin/env liquidsoap

Set up the playlists

day = playlist("/radio/day.pls") # Day music

night = playlist("/radio/night.pls") # Night music

mic = buffer(input.alsa()) # Microphone

radio = switch([({8h-19h}, day), ({19h-20h}, mic), ({20h-8h}, night)])

Add crossfading

radio = crossfade(fade_out=3., fade_in=3., duration=5., radio)

Add jingles

jingles = playlist("/radio/jingls.pls")

radio = random(weights=[1, 4], [jingles, radio])

Add some audio effects

radio = nrj(normalize(radio))

Just in case, a fallback

radio = fallback([radio, single("fallback.mp3")])

Output to icecast both in mp3 and aac

output.icecast(%mp3, host="localhost", port=8000, password="hackme",

mount="my-radio.mp3", radio)

output.icecast(%fdkaac, host="localhost", port=8000, password="hackme",

mount="my-radio.aac", radio)

That’s it for now, we will provide many more details in chapter 6.

39

5
A programming language

Before getting into the more advanced radio setups which can be achieved with
Liquidsoap, we need to understand the language and the general concepts behind
it. If you are eager to start your radio, it might be a good idea to at least skim
though this chapter quickly at a first reading, and come back later to it when a
deeper knowledge about a specific point is required.

5.1 General features

Liquidsoap is a novel language which was designed from scratch. We present
the generic constructions, feature specifically related to streaming are illustrated
in chapter 6 and further detailed in chapter 8.

Typing. One of the main features of the language is that it is typed. This means
that every expression belongs to some type which indicates what it is. For
instance, "hello" is a string whereas 23 is an integer, and, when presenting
a construction of the language, we will always indicate the associated type.
Liquidsoap implements a typechecking algorithm which ensures that whenever
a string is expected a string will actually be given, and similarly for other types.
This is done without running the program, so that it does not depend on some
dynamic tests, but is rather enforced by theoretical considerations. Another
distinguishing feature of this algorithm is that it also performs type inference:
you never actually have to write a type, those are guessed automatically by
Liquidsoap. This makes the language very safe, while remaining very easy to
use. For curious people reading French, the algorithm and the associated theory
are described in a publication (Baelde and Mimram 2008).

Incidentally, apart from the usual type information which can be found in many

40 CHAPTER 5. A PROGRAMMING LANGUAGE

languages, Liquidsoap also uses typing to check the coherence of parameters
which are specific to streaming. For instance, the number of audio channels of
streams is also present in their type, and it ensures that operators always get
the right number of channels.

Functional programming. The language is functional, which means that you
can very easily define functions, and that functions can be passed as arguments of
other functions. This might look like a crazy thing at first, but it is actually quite
common in some language communities (such as OCaml). It also might look
quite useless: why should we need such functions when describing webradios?
You will soon discover that it happens to be quite convenient in many places: for
handlers (we can specify the function which describes what to do when some
event occurs such as when a dj connects to the radio), for transitions (we pass a
function which describes the shape we want for the transition) and so on.

Streams. The unique feature of Liquidsoap is that it allows the manipulation of
sources which are functions which will generate streams. These streams typically
consist of stereo audio data, but we do not restrict to this: they can contain audio
with arbitrary number of channels, they can also contain an arbitrary number
of video channels, and also midi channels (there is limited support for sound
synthesis).

Execution model. When running a Liquidsoap program, the compiler goes
through these four phases:

1. lexical analysis and parsing: Liquidsoap ingests your program and ensures
that its syntax follows the rules,

2. type inference and type checking: Liquidsoap checks that your program
does not contain basic errors and that types are correct,

3. compilation of the program: this produces a new program which will
generate the stream (a stream generator),

4. instantiation: the sources are created and checked to be infallible where
required,

5. execution: we run the stream generator to actually produce audio.

The two last phases can be resumed by the following fact: Liquidsoap is a stream
generator generator, it generates stream generators (sic).

In order to illustrate this fact, consider the following script (don’t worry if you
don’t understand all the details for now, it uses concepts which will be detailed
below):

def note(n) = sine(440. * pow(2., n / 12.)) end

s = add(list.map(note, [0., 3., 7.]))

output(s)

5.2. WRITING SCRIPTS 41

Let us explain how this script should be thought of as a way of describing how
to generate a stream generator. In order to construct the stream generator, Liq-
uidsoap will execute the function list.map which will produce the list obtained
by applying the function note on each element of the list and, in turn, this
function will be replaced by its definition, which consists of a sine generator.
The execution of the script will act as if Liquidsoap successively replaced the
second line by

s = add([note(0.), note(3.), note(7.)])

and then by

s = add([sine(440. * pow(2., 0. / 12.)),

sine(440. * pow(2., 3. / 12.)),

sine(440. * pow(2., 7. / 12.))])

and finally by

s = add([sine(440.), sine(523.25), sine(659.26)])

which is the actual stream generator. We see that running the script has gener-
ated the three sine stream generators!

Standard library. Although the core of Liquidsoap is written inOCaml, many of
the functions of Liquidsoap are written in the Liquidsoap language itself. Those
are defined in the stdlib.liq script, which is loaded by default and includes all
the libraries. You should not be frightened to have a look at the standard library,
it is often useful to better grasp the language, learn design patterns and tricks,
and add functionalities. Its location on your system is indicated in the variable
configure.libdir and can be obtained by typing

liquidsoap --check "print(configure.libdir)"

5.2 Writing scripts

Choosing an editor. Scripts in Liquidsoap can be written in any text editor, but
things are more convenient if there is some specific support. We have developed
a mode for the Emacs editor which adds syntax coloration and indentation
when editing Liquidsoap files. User-contributed support for Liquidsoap is also
available for popular editors such as Visual Studio Code1 or vim2.

Documentation of operators. Whenwriting scripts youwill often need details
about a particular operator and its arguments. We recall from section 4.1 that
the documentation of an operator operator, including its type and a description
of its arguments, can be obtained by typing

1https://github.com/vittee/vscode-liquidsoap
2https://github.com/mcfiredrill/vim-liquidsoap

https://github.com/vittee/vscode-liquidsoap
https://github.com/mcfiredrill/vim-liquidsoap

42 CHAPTER 5. A PROGRAMMING LANGUAGE

liquidsoap -h operator

This documentation is also available on the website1.

Interactive mode. In order to test the functions that will be introduced in this
section, it can be convenient to use the interactive mode of Liquidsoap which
can be used to type small expressions and immediately see their result. This
interactive mode is rarely used in practice, but is useful to learn the language
and do small experiments. It can be started with

liquidsoap --interactive

It will display a “#”, meaning it is waiting for expressions, which are programs in
the language. They have to be ended by “;;” in order to indicate that Liquidsoap
should evaluate them. For instance, if we type

name = "Sam";;

it answers

name : string = "Sam"

which means that we have defined a variable name whose type is string and
whose value is "Sam". It can be handy as a calculator:

2*3;;

results in

- : int = 6

(“-” means that we did not define a variable, that the type of the expression is
int and that it evaluates to 6). Also, variables can be reused: if we type

print("Hello #{name} and welcome!");;

it will answer

Hello Sam and welcome!

- : unit = ()

The command printwas evaluated and displays its argument and then the result
is shown, in the same format as above: -means that we did not define a variable,
the type of the result is unit and its value is (). The meaning of these is detailed
below. In the following, all examples starting by # indicate that they are being
entered in the interactive mode.

Inferred types. Another useful feature is the -i option of Liquidsoap which
displays the types of variables in a file. For instance, if we have a file test.liq

containing

1https://liquidsoap.info/doc-dev/reference.html

https://liquidsoap.info/doc-dev/reference.html

5.3. BASIC VALUES 43

x = 3.2

def f (x) = x + 1 end

and we run

liquidsoap -i test.liq

it will display the types for x and f:

x : float

f : (int) -> int

meaning that x is a floating point number and f is a function taking an integer
as argument and returning an integer.

5.3 Basic values

We begin by describing the values one usually manipulates in Liquidsoap.

Integers and floats. The integers, such as 3 or 42, are of type int. Depending
on the current architecture of the computer on which we are executing the script
(32 or 64 bits, the latter being the most common nowadays) they are stored on
31 or 63 bits. The minimal (resp. maximal) representable integer can be obtained
as the constant min_int (resp. max_int); typically, on a 64 bits architecture, they
range from -4611686018427387904 to 4611686018427387903.

The floating point numbers, such as 2.45, are of type float, and are in double
precision, meaning that they are always stored on 64 bits. We always write a
decimal point in them, so that 3 and 3. are not the same thing: the former is an
integer and the latter is a float. This is a source of errors for beginners, but is
necessary for typing to work well. For instance, if we try to execute a program
containing the instruction

s = sine(500)

it will raise the error

At line 1, char 9:

Error 5: this value has type int but it should be a subtype of float

which means that the sine function expects a float as argument, but an integer is
provided. The fix here obviously consists in replacing “500” by “500.” (beware
of the dot).

The usual arithmetic operations are available (+, -, *, /), and work for both
integers and floats. For floats, traditional arithmetic functions are available
such as sqrt (square root), exp (exponential), sin (sine), cos (cosine) and so
on. Random integers and floats can be generated with the random.int and
random.float functions.

44 CHAPTER 5. A PROGRAMMING LANGUAGE

Strings. Strings are written between double or single quotes, e.g. "hello!" or
'hello!', and are of type string.

The function to output strings on the standard output is print, as in

print("Hello, world!")

Incidentally, this function can also be used to display values of any type, so that

print(3+2)

will display 5, as expected. In practice, one rarely does use this functions, which
displays on the standard output, but rather the logging functions log.critical,
log.severe, log.important, log.info and log.debug which write strings of vari-
ous importance in the logs, so that it is easier to keep track of them: they are
timestamped, they can easily be stored in files, etc.

In order to write the character “"” in a string, one cannot simply type “"” since
this is already used to indicate the boundaries of a string: this character should
be escaped, which means that the character “\” should be typed first so that

print("My name is \"Sam\"!")

will actually display “My name is "Sam"!”. Other commonly used escaped
characters are “\\” for backslash and “\n” for new line. Alternatively, one can
use the single quote notation, so that previous example can also be written as

print('My name is "Sam"!')

This is most often used when testing json data which can contain many quotes
or for command line arguments when calling external scripts. The character “\”
can also be used at the end of the string to break long strings in scripts without
actually inserting newlines in the strings. For instance, the script

print("His name is \

Romain.")

will actually print

His name is Romain.

Note that there is no line change between “is” and “Romain”, and the indentation
before “Romain” is not shown either.

The concatenation of two strings is achieved by the infix operator “ˆ”, as in

user = "dj"

print("Current user is " ^ user)

Instead of using concatenation, it is often rather convenient to use string inter-
polation: in a string, #{e} is replaced by the string representation of the result of
the evaluation of the expression e:

5.3. BASIC VALUES 45

user = "admin"

print("The user #{user} has just logged.")

will print The user admin has just logged. or

print("The number #{random.float()} is random.")

will print The number 0.663455738438 is random. (at least it did last time I tried).

The string representation of any value in Liquidsoap can be obtained using the
function string, e.g. string(5) is "5". Some other useful string-related function
are

• string.length: compute the length of a string

string.length("abc");;

- : int = 3

• string.sub: extract a substring

string.sub("hello world!", start=6, length=5);;

- : string = "world"

• string.split: split a string on a given character

string.split(separator=":", "a:42:hello");;

- : [string] = ["a", "42", "hello"]

• string.contains: test whether a string contains (or begins or ends with)
a particular substring,

• string.quote: escape shell special characters (you should always use this
when passing strings to external programs).

Finally, some functions operate on regular expressions, which describe some
shapes for strings:

• string.match: test whether a string matches a regular expression,
• string.replace: replace substrings matching a regular expression.

A regular expression R or S is itself a string where some characters have a
particular meaning:

• . means “any character”,
• R* means “any number of times something of the form R”,
• R|S means “something of the form R or of the for S”,

other characters represent themselves (and special characters such as ., * or .
have to be escaped, which means that \. represents the character .). An example
is worth a thousand words: we can test whether a string fname corresponds to
the name of an image file with

string.match(pattern=".*\\.png|.*\\.jpg", fname)

46 CHAPTER 5. A PROGRAMMING LANGUAGE

Namely, this function will test if fname matches the regular expression
.*\.png|.*\.jpg which means “any number of any character followed by .png

or any number of any character followed by .jpg”.

Booleans. The booleans are either true or false and are of type bool. They can
be combined using the usual boolean operations

• and: conjunction,
• or: disjunction,
• not: negation.

Booleans typically originate from comparison operators, which take two values
and return booleans:

• ==: compares for equality,
• !=: compares for inequality,
• <=: compares for inequality,

and so on (<, >=, >). For instance, the following is a boolean expression:

(n < 3) and not (s == "hello")

The time predicates such as 10h-15h are also booleans, which are true or false
depending on the current time, see section 6.2.

Conditional branchings execute code depending on whether a condition is true
or not. For instance, the code

if (1 <= x and x <= 12) or (not 10h-15h) then

print("The condition is satisfied")

else

print("The condition ain't satisified")

end

will print that the condition is satisfied when either x is between 1 and 12 or the
current time is not between 10h and 15h. A conditional branching might return
a value, which is the last computed value in the chosen branch. For instance,

y = if x < 3 then "A" else "B" end

will assign "A" or "B" to y depending on whether x is below 3 or not. The two
branches of a conditional should always have the same return type:

x = if 1 == 2 then "A" else 5 end

will result in

At line 1, char 19-21:

Error 5: this value has type (...) -> string

but it should be a subtype of (...) -> int

5.3. BASIC VALUES 47

meaning that "A" is a string but is expected to be an integer because the second
branch returns an integer, and the two should be of same nature. The else

branch is optional, in which case the then branch should be of type unit:

if x == "admin" then print("Welcome admin") end

In the case where you want to perform a conditional branching in the else

branch, the elsif keyword should be used, as in the following example, which
assigns 0, 1, 2 or 3 to s depending on whether x is "a", "b", "c" or something
else:

s = if x == "a" then 0

elsif x == "b" then 1

elsif x == "c" then 2

else 3 end

This is equivalent (but shorter to write) to the following sequence of imbricated
conditional branchings:

s = if x == "a" then 0

else

if x == "b" then 1

else

if x == "c" then 2

else 3 end

end

end

Finally, we shouldmention that the notation c?a:b is also available as a shorthand
for if c then a else b end, so that the expression

y = if x < 3 then "A" else "B" end

can be shortened to

y = (x<3)?"A":"B"

(and people will think that you are a cool guy).

Unit. Some functions, such as print, do not return a meaningful value: we are
interested in what they are doing (e.g. printing on the standard output) and not
in their result. However, since typing requires that everything returns something
of some type, there is a particular type for the return of such functions: unit.
Just as there are only two values in the booleans (true and false), there is only
one value in the unit type, which is written (). This value can be thought of as
the result of the expression saying “I’m done”.

In sequences of instructions, all the instructions but the last should be of type
unit. For instance, the following function is fine:

48 CHAPTER 5. A PROGRAMMING LANGUAGE

def f()

print("hello")

5

end

This is a function printing “hello” and then returning 5, see section 5.5 for details
about functions. Sequences of instructions are delimited by newlines, but can
also be separated by ; in order to have them fit on one line, i.e., the above can
equivalently be written

def f() = print("hello"); 5 end

However, the code

def f()

3+5

2

end

gives rise to the following warning

At line 2, char 2-4:

Warning 3: This expression should have type unit.

The reason is that this function is first computing the result of 3+5 and then
returning 2 without doing anything with the result of the addition, and the fact
that the type of 3+5 is not unit (it is int) allows to detect that. It is often the sign
of a mistake when one computes something without using it; if however it is on
purpose, you should use the ignore function to explicitly ignore the result:

def f()

ignore(3+5)

2

end

Lists. Somemore elaborate values can be constructed by combining the previous
ones. A first kind is lists which are finite sequences of values, being all of the
same type. They are constructed by square bracketing the sequence whose
elements are separated by commas. For instance, the list

[1, 4, 5]

is a list of three integers (1, 4 and 5), and its type is [int], and the type of
["A", "B"] would obviously be [string]. Note that a list can be empty: []. The
function list.hd returns the head of the list, that is its first element:

list.hd([1, 4, 5]);;

- : int = 1

5.3. BASIC VALUES 49

This function also takes an optional argument default which is the value which
is returned on the empty list, which does not have a first element:

list.hd(default=0, []);;

- : int = 0

Similarly, the list.tl function returns the tail of the list, i.e. the list without its
first element (by convention, the tail of the empty list is the empty list). Other
useful functions are

• list.add: add an element at the top of the list

list.add(5, [1, 3]);;

- : [int] = [5, 1, 3]

• list.length: compute the length of a list

list.length([5, 1, 3]);;

- : int = 3

• list.mem: check whether an element belongs to a list

list.mem(2, [1, 2, 3]);;

- : bool = true

• list.map: apply a function to all the elements of a list

list.map(fun(n) -> 2*n, [1, 3, 5]);;

- : [int] = [2, 6, 10]

• list.iter: execute a function on all the elements of a list

list.iter(fun(n) -> print(newline=false, n), [1, 3, 5]);;

135- : unit = ()

• list.nth: return the n-th element of a list

list.nth([5, 1, 3], 2);;

- : int = 3

(note that the first element is the one at index n=0).

• list.append: construct a list by taking the elements of the first list and
then those of the second list

list.append([1, 3], [2, 4, 5]);;

- : [int] = [1, 3, 2, 4, 5]

Tuples. Another construction present in Liquidsoap is tuples of values, which
are finite sequences of values which, contrarily to lists, might have different
types. For instance,

(3, 4.2, "hello")

50 CHAPTER 5. A PROGRAMMING LANGUAGE

is a triple (a tuple with three elements) of type

int * float * string

which indicate that the first element is an integer, the second a float and the
third a string. In particular, a pair is a tuple with two elements. For those, the
first and second element can be retrieved with the functions fst and snd:

p = (3, "a");;

p : int * string = (3, "a")

fst(p);;

- : int = 3

snd(p);;

- : string = "a"

For general tuples, there is a special syntax in order to access their elements.
For instance, if t is the above tuple (3, 4.2, "hello"), we can write

let (n, x, s) = t

which will assign the first element to the variable n, the second element to the
variable x and the third element to the variable s:

t = (3, 4.2, "hello");;

t : int * float * string = (3, 4.2, "hello")

let (n, x, s) = t;;

(n, x, s) : int * float * string = (3, 4.2, "hello")

n;;

- : int = 3

x;;

- : float = 4.2

s;;

- : string = "hello"

Association lists. A quite useful combination of the two previous data struc-
tures is association lists, which are lists of pairs. Those can be thought of as
some kind of dictionary: each pair is an entry whose first component is its key
and second component is its value. These are the way metadata are represented
for instance: they are lists of pairs of strings, the first string being the name of
the metadata, and the second its value. For instance, a metadata would be the
association list

m = [("artist", "Frank Sinatra"), ("title", "Fly me to the moon")]

indicating that the artist of the song is “Frank Sinatra” and the title is “Fly me to
the moon”. For such an association list, one can obtain the value associated to a
given key using the list.assoc function:

list.assoc("title", m)

5.4. PROGRAMMING PRIMITIVES 51

will return "Fly me to the moon", i.e. the value associated to "title". Since
this is so useful, we have a special notation for the above function, and it is
equivalent to write

m["title"]

to obtain the "title" metadata. Other useful functions are

• list.assoc.mem: determine whether there is an entry with a given key,
• list.assoc.remove: remove all entries with given key.

Apart from metadata, association lists are also used to store http headers (e.g. in
http.get).

In passing, you should note the importance of parenthesis when defining pairs.
For instance

["a", "b"]

is a list of strings, whereas

[("a", "b")]

is a list of pairs of strings, i.e. an association list.

5.4 Programming primitives

Variables. We have already seen many examples of uses of variables: we use

x = e

in order to assign the result of evaluating an expression e to a variable x, which
can later on be referred to as x. Variables can be masked: we can define two
variables with the same name, and at any point in the program the last defined
value for the variable is used:

n = 3

print(n)

n = n + 2

print(n)

will print 3 and 5. Contrarily to most languages, the value for a variable cannot
be changed (unless we explicitly require this by using references, see below), so
the above program does not modify the value of n, it is simply that a new n is
defined.

There is an alternative syntax for declaring variables which is

def x =

e

end

52 CHAPTER 5. A PROGRAMMING LANGUAGE

It has the advantage that the expression e can spread over multiple lines and
thus consist of multiple expressions, in which case the value of the last one will
be assigned to x, see also section 5.5. This is particularly useful to use local
variables when defining a value. For instance, we can assign to x the square of
sin(2) by

def x =

y = sin(2.)

y*y

end

Note that we first compute sin(2) in a variable y and then multiply y by itself,
which avoids computing sin(2) twice. Also, the variable y is local: it is defined
only until the next end, so that

y = 5

def x =

y = sin(2.)

y*y

end

print(y)

will print 5: outside the definition of x, the definition of y one on the first line is
not affected by the local redefinition.

When we define a variable, it is generally to use its value: otherwise, why
bothering defining it? For this reason, Liquidsoap issues a warning when an
unused variable is found, since it is likely to be a bug. For instance, on

n = 2 + 2

Liquidsoap will output

Line 1, character 1:

Warning 4: Unused variable n

If this situation is really wanted, you should use ignore in order to fake a use of
the variable n by writing

ignore(n)

Another possibility is to assign the special variable _, whose purpose is to store
results which are not going to be used afterwards:

_ = 2 + 2

References. As indicated above, by default, the value of a variable cannot be
changed. However, one can use a reference in order to be able to do this. Those
can be seen as memory cells, containing values of a given fixed type, which can

5.4. PROGRAMMING PRIMITIVES 53

be modified during the execution of the program. They are created with the ref

function, with the initial value of the cell as argument. For instance,

r = ref(5)

declares that r is a reference which contains 5 as initial value. Since 5 is an
integer (of type int), the type of the reference r will be

(() -> int).{set : (int) -> unit}

It might be difficult for you to read right now (the syntax for curly brackets will
be explained in section 5.5 and section 5.6 below), but all you need to know is
that it indicates that, on such a reference, two operations are available:

• one can obtain the value of the reference r by writing r(), for instance

x = r() + 4

declares the variable x as being 9 (which is 5+4),

• one can change the value of the reference by using the := keyword, e.g.

r := 2

will assign the value 2 to r.

The behavior of references can be illustrated by the following simple interactive
session:

r = ref(5);;

r : (() -> int).{set : (int) -> unit} = <fun>.{set=<fun>}

r();;

- : int = 5

r := 2;;

- : unit = ()

r();;

- : int = 2

Note that the type of a reference is fixed: once r is declared to be a reference to
an integer, as above, one can only put integers into it, so that the script

r = ref(5)

r := "hello"

will raise the error

Error 5: this value has type string

but it should be a subtype of int

which can be explained as follows. On the first line, the declaration r = ref(5)

implies that r is a reference to an int since it initially contains 5 which is an
integer. However, on the second line, we try to assign a string to r, which would
only be possible if r was a reference to a string.

54 CHAPTER 5. A PROGRAMMING LANGUAGE

Loops. The usual looping constructions are available in Liquidsoap. The for

loop repeatedly executes a portion of code with an integer variable varying
between two bounds, being increased by one each time. For instance, the
following code will print the integers 1, 2, 3, 4 and 5, which are the values
successively taken by the variable i:

for i = 1 to 5 do

print(i)

end

In practice, such loops could be used to add a bunch of numbered files
(e.g. music1.mp3, music2.mp3, music3.mp3, etc.) in a request queue for instance.

The while loop repeatedly executes a portion of code, as long a condition is
satisfied. For instance, the following code doubles the contents of the reference
n as long as its value is below 10:

n = ref(1)

while n() < 10 do

n := n() * 2

end

print(n())

The variable n will thus successively take the values 1, 2, 4, 8 and 16, at which
point the looping condition n() < 10 is not satisfied anymore and the loop is
exited. The printed value is thus 16.

5.5 Functions

Liquidsoap is built around the notion of function: most operations are performed
by those. For some reason, we sometimes call operators the functions acting
on sources. Liquidsoap includes a standard library which consists of functions
defined in the Liquidsoap language, including fairly complex operators such as
playlistwhich plays a playlist or crossfadewhich takes care of fading between
songs.

Basics. A function is a construction which takes a bunch of arguments and
produces a result. For instance, we can define a function f taking two float
arguments, prints the first and returns the result of adding twice the first to the
second:

def f(x, y)

print(x)

2*x+y

end

5.5. FUNCTIONS 55

This function can also be written on one line if we use semicolons (;) to separate
the instructions instead of changing line:

def f(x, y) = print(x); 2*x+y end

The type of this function is

(int, int) -> int

The arrow ->means that it is a function, on the left are the types of the arguments
(here, two arguments of type int) and on the right is the type of the returned
value of the function (here, int). In order to use this function, we have to apply
it to arguments, as in

f (3, 4)

This will trigger the evaluation of the function, where the argument x (resp. y)
is replaced by 3 (resp. 4), i.e., it will print 3 and return the evaluation of 2*3+4,
which is 10. Of course, generally, there is no reason why all arguments and the
result should have the same type as in the above example, for instance:

def f(s, x) = string.length(s) + int_of_float(x) end;;

f : (string, float) -> int = <fun>

As explained earlier, declarations of variables made inside the definition of a
function are local: they are only valid within this definition (i.e., until the next
end). For instance, in the definition

def f(x) =

y = sin(x)

y*y

end

the variable y is not available after the definition.

Handlers. A typical use of functions in Liquidsoap is for handlers, which are
functions to be called when a particular event occurs, specifying the actions to
be taken when it occurs. For instance, the source.on_metadata operator allows
registering a handler when metadata occurs in a stream. Its type is

(source('a), (([string * string]) -> unit)) -> unit

and it thus takes two arguments:

• the source, of type source('a), see section 8.1, whose metadata are to be
watched,

• the handler, which is a function of type

([string * string]) -> unit

56 CHAPTER 5. A PROGRAMMING LANGUAGE

which takes as argument an association list (of type [string * string])
encoding the metadata and returns nothing meaningful (unit).

When some metadata occur in the source, the handler is called with the metadata
as argument. For instance, we can print the title of every song being played on
our radio (a source named radio) with

def handle_metadata(m) =

print(m["title"])

end

source.on_metadata(radio, handle_metadata)

The handler is here the function handle_metadata, which prints the field associ-
ated to "title" in the association list given in the argument m.

Other useful operators allow the registration of handlers for the following
situations:

• blank.detect: when a source is streaming blank (no sound has been
streamed for some period of time),

• source.on_track: when a new track is played,
• source.on_end: when a track is about to end,
• on_start and on_shutdown: when Liquidsoap is starting or stopping.

Many other operators also take more specific handlers as arguments. For in-
stance, the operator input.harbor, which allows users to connect to a Liquidsoap
instance and send streams, has on_connect and on_disconnect arguments which
allow the registration of handlers for the connection and disconnection of users.

Anonymous functions. For concision in scripts, it is possible define a function
without giving it a name, using the syntax

fun (x) -> ...

This is called an anonymous function, and it is typically used in order to specify
short handlers in arguments. For instance, the above example for printing the
title in metadatas could equivalently be rewritten as

source.on_metadata(radio, fun (m) -> print(m["title"]))

where we define the function directly in the argument.

As a side note, this means that a definition of a function of the form

def f(x) =

...

end

could equivalently be written

f = fun (x) -> ...

5.5. FUNCTIONS 57

When using this syntax, on the right hand of -> Liquidsoap expects exactly one
expression. If you intend to use multiple ones (for instance, in order to perform
a sequence of actions), you can use the begin ... end syntax, which allows
grouping multiple expressions as one. For instance,

handle_metadata = fun (m) -> begin

print(m["artist"])

print(m["title"])

end

source.on_metadata(radio, handle_metadata)

Labeled arguments. A function can have an arbitrary number of arguments,
and when there are many of them it becomes difficult to keep track of their
order and their order matter! For instance, the following function computes the
sample rate given a number of samples in a given period of time:

def samplerate(samples, duration) = samples / duration end

which is of type

(float, float) -> float

For instance, if you have 110250 samples over 2.5 seconds the samplerate will be
samplerate(110250., 2.5) which is 44100. However, if you mix the order of the
arguments and type samplerate(2.5, 110250.), you will get quite a different
result (2.27×10-5) and this will not be detected by the typing system because both
arguments have the same type. Fortunately, we can give labels to arguments
in order to prevent this, which forces explicitly naming the arguments. This is
indicated by prefixing the arguments with a tilde “~”:

def samplerate(~samples, ~duration) = samples / duration end

The labels will be indicated as follows in the type:

(samples : float, duration : float) -> float

Namely, in the above type, we read that the argument labeled samples is a float
and similarly for the one labeled duration. For those arguments, we have to give
the name of the argument when calling the function:

samplerate(samples=110250., duration=2.5)

The nice byproduct is that the order of the arguments does not matter anymore,
the following will give the same result:

samplerate(duration=2.5, samples=110250.)

Of course, a function can have both labeled and non-labeled arguments.

58 CHAPTER 5. A PROGRAMMING LANGUAGE

Optional arguments. Another useful feature is that we can give default values
to arguments, which thus become optional: if, when calling the function, a value
is not specified for such arguments, the default value will be used. For instance,
if for some reason we tend to generally measure samples over a period of 2.5
seconds, we can make this become the value for the duration parameter:

def samplerate(~samples, ~duration=2.5) = samples / duration end

In this way, if we do not specify a value for the duration, its value will implicitly
be assumed to be 2.5, so that the expression:

samplerate(samples=110250.)

will still evaluate to 44100. Of course, if we want to use another value for the
duration, we can still specify it, in which case the default value will be ignored:

samplerate(samples=132300., duration=3.)

The presence of an optional argument is indicated in the type by prefixing the
corresponding label with “?”, so that the type of the above function is

(samples : float, ?duration : float) -> float

Actual examples. As a more concrete example of labeled arguments, we can
see that the type of the operator output.youtube.live, which outputs a video
stream to YouTube, is

(?id : string, ?video_bitrate : int, ?audio_encoder : string,

?audio_bitrate : int, ?url : string, key : string, source) -> source↪→

(we have only slightly simplified the type source, which will only be detailed in
section 8.1). Even if we have not read the documentation of this function, we
can still guess what it is doing:

• there are 5 optional arguments that we should be able to ignore because
they have reasonable default values (although we can guess the use of
most of them from the label, e.g. video_bitrate should specify the bitrate
we want to encode video, etc.),

• there is 1 mandatory argument which is labeled key of type string: it
must be the secret key we need in order to broadcast on our YouTube
account,

• there is 1 mandatory argument, unlabeled, of type source: this is clearly
the source that we are going to broadcast to YouTube.

As we can see the types and labels of arguments already provide us with much
information about the functions and prevent many mistakes.

If you want a more full-fledged example, have a look at the type of
output.icecast:

5.5. FUNCTIONS 59

(?id : string, ?chunked : bool, ?connection_timeout : float,

?description : string, ?dumpfile : string, ?encoding : string,

?fallible : bool, ?format : string, ?genre : string, ?headers :

[string * string], ?host : string, ?icy_id : int, ?icy_metadata :

string, ?mount : string, ?name : string, ?on_connect : (() ->

unit), ?on_disconnect : (() -> unit), ?on_error : ((string) ->

float), ?on_start : (() -> unit), ?on_stop : (() -> unit),

?password : string, ?port : int, ?protocol : string, ?public :

bool, ?start : bool, ?timeout : float, ?url : string, ?user :

string, ?verb : string, format('a), source) -> source

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Although the function has 31 arguments, it is still usable because most of them
are optional so that they are not usually specified. In passing, we recognize some
of the concepts introduced earlier: the headers (header parameter) are coded as
an association list, and there are quite few handlers (on_connect, on_disconnect,
etc.).

Polymorphism. Some functions can operate on values of many possible types.
For instance, the function list.tl, which returns the tail of the list (the list
without its first element), works on lists of integers so that it can have the type

([int]) -> [int]

but it also works on lists of strings so that it can also have the type

([string]) -> [string]

and so on. In fact, this would work for any type, which is why in Liquidsoap the
function list.tl is actually given the type

(['a]) -> ['a]

which means: “for whichever type you replace 'a with, the resulting type is a
valid type for the function”. Such a function is called polymorphic, in the sense
that it can be given multiple types: here, 'a is not a type but rather a “meta-type”
(the proper terminology is a type variable) which can be replaced by any regular
type. Similarly, the empty list [] is of type ['a]: it is a valid list of whatever
type. More interestingly, the function fst which returns the first element of a
pair has the type

('a * 'b) -> 'a

which means that it takes as argument a pair of a something ('a) and a something
else ('b) and returns a something ('a). For instance, the type

(string * int) -> string

is valid for fst. In general, a type can involve an arbitrary number of type
variables which are labeled 'a, 'b, 'c and so on.

60 CHAPTER 5. A PROGRAMMING LANGUAGE

Constraints. In Liquidsoap, some type variables can also be constrained so that
they cannot be replaced by any type, but only specific types. A typical example
is the multiplication function *, which operates on both integers and floats, and
can therefore be given both the types

(int, int) -> int

and

(float, float) -> float

but not the type

(string, string) -> string

If you have a look at the type of * in Liquidsoap, it is

('a, 'a) -> 'a where 'a is a number type

which means that it has type ('a, 'a) -> 'a where 'a can only be replaced by
a type that represents a number (i.e., int or float). Similarly, the comparison
function <= has type

('a, 'a) -> bool where 'a is an orderable type

which means that it has the type ('a, 'a) -> bool for any type 'a on which
there is a canonical order (which is the case of all usual types, excepting for
function types and source types).

Getters. We often want to be able to dynamically modify some parameters in a
script. For instance, consider the operator amplify, which takes a float and an
audio source and returns the audio amplified by the given volume factor: we
can expect its type to be

(float, source('a)) -> source('a)

so that we can use it to have a radio consisting of a microphone input amplified
by a factor 1.2 by

mic = input.alsa()

radio = amplify(1.2, mic)

In the above example, the volume 1.2 was supposedly chosen because the sound
delivered by the microphone is not loud enough, but this loudness can vary from
time to time, depending on the speaker for instance, and we would like to be
able to dynamically update it. The problem with the current operator is that the
volume is of type float and a float cannot change over time: it has a fixed value.

In order for the volume to have the possibility to vary over time, instead of having
a float argument for amplify, we have decided to have instead an argument of
type

5.5. FUNCTIONS 61

() -> float

This is a function which takes no argument and returns a float (remember that
a function can take an arbitrary number of arguments, which includes zero
arguments). It is very close to a float excepting that each time it is called the
returned value can change: we now have the possibility of having something
like a float which varies over time. We like to call such a function a float getter ,
since it can be seen as some kind of object on which the only operation we can
perform is get the value. For instance, we can define a float getter by

n = ref(0.)

def f ()

n := n() + 1.

n()

end

Each time we call f, by writing f() in our script, the resulting float will be
increased by one compared to the previous one: if we try it in an interactive
session, we obtain

f();;

- : float = 1.0

f();;

- : float = 2.0

f();;

- : float = 3.0

Since defining such arguments often involves expressions of the form

fun () -> e

which is somewhat heavy, we have introduced the alternative syntax

{e}

for it. It can be thought of as a variant of the expression ewhich will be evaluated
each time it is used instead of being evaluated once. Its use is illustrated below.

Finally, we should mention an important fact. Since the value of a reference r

can be queried by writing r(), any reference can be considered as a getter: this
is the function which, when queried, will return the contents of the reference!

Variations on a volume. The type of amplify is thus actually

(() -> float, source('a)) -> source('a)

and the operator will regularly call the volume function in order to have the
current value for the volume before applying it. To be precise, it is actually
called before each frame, which means roughly every 0.04 second. Let’s see how
we can use this in scripts. We can, of course, still apply a constant factor with

62 CHAPTER 5. A PROGRAMMING LANGUAGE

def volume () = 1.2 end

radio = amplify(volume, mic)

or, using anonymous functions,

radio = amplify(fun () -> 1.2, mic)

which we generally write, using the alternative syntax,

radio = amplify({1.2}, mic)

More interestingly, we can use the value of a float reference v for amplification:

radio = amplify({v()}, mic)

when the value of the reference gets changed, the amplification will get changed
too. Moreover, since any reference can be considered as a getter, as mentioned
above, this can be written in an even simpler way:

radio = amplify(v, mic)

However, we need to use the above syntax if we want to manipulate the value
of the reference. For instance,

radio = amplify({2 * v()}, mic)

will amplify by twice the value of v.

In practice, float getters are often created using interactive.floatwhich creates
a float value which can be modified on the telnet server (this is an internal server
provided by Liquidsoap on which other applications can connect to interact
with it, as detailed in section 6.8), or osc.float which reads a float value from
an external controller using the osc library. For instance, with the script

volume = interactive.float("volume", 1.)

radio = amplify(volume, mic)

the volume can be modified by issuing the telnet command

var.set volume = 0.5

You should remember that getters are regular functions. For instance, if we
expect that the volume on telnet to be expressed in decibels, we can convert it
to an actual amplification coefficient as follows:

volume = interactive.float("volume", 1.)

radio = amplify({lin_of_dB(volume())}, mic)

As a more elaborate variation on this, let’s program a fade in: the volume
progressively increases from 0 to 1 in fade_duration seconds (here, 5 seconds).
We recall that the volume function will be called before each frame, which is
a buffer whose duration is called here frame_duration and can be obtained by
querying the appropriate configuration parameter: in order to have the volume

5.5. FUNCTIONS 63

raise from 0 to 1, we should increase it by frame_duration / fade_duration at
each call. If you execute the following script, you should thus hear a sine which
is getting louder and louder during the 5 first seconds:

fade_duration = 5.

frame_duration = settings.frame.duration()

v = ref(0.)

def volume ()

v := v() + frame_duration / fade_duration

if v() > 1. then v := 1. end

log.important("Volume is now #{v()}")

v()

end

s = amplify(volume, sine())

output(s)

Of course, this is for educational purposes only, and the actual way one would
usually perform a fade in Liquidsoap is detailed in section 6.4.

Let us give another advanced example, which uses many of the above construc-
tions. The standard library defines a function metadata.getter.float, whose
type is

(float, string, source('a)) -> source('a) * (() -> float)

which creates a float getter with given initial value (the first argument), which
can be updated by reading a given metadata (the second argument) on a given
source (the third argument). Its code is

def metadata.getter.float(init, metadata, s)

x = ref(init)

def f(m)

s = m[metadata]

if s != "" then x := float_of_string(s) end

end

source.on_metadata(s, f)

{x()}

end

You can see that it create a reference x, which contains the current value, and
registers a handler for metadata, which updates the value when the metadata is
present, i.e. m[metadata] is different from the empty string "", which is the default
value. Given a radio source which contains metadata labeled “liq_amplify”, we
can actually change the volume of the source according to the metadata with

volume = metadata.getter.float(1., "liq_amplify", radio)

64 CHAPTER 5. A PROGRAMMING LANGUAGE

radio = amplify(volume, radio)

Constant or function. Finally, in order to simplify things a bit, you will see that
the type of amplify is actually

({float}, source('a)) -> source('a)

where the type {float} means that both float and () -> float are accepted, so
that you can still write constant floats where float getters are expected. What
we actually call a getter is generally an element of such a type, which is either a
constant or a function with no argument.

In order to work with such types, the standard library often uses the following
functions:

• getter, of type ({'a}) -> {'a}, creates a getter,
• getter.get, of type ({'a}) -> 'a, retrieves the current value of a getter,
• getter.function, of type ({'a}) -> () -> 'a, creates a function from a
getter.

Recursive functions. Liquidsoap supports functions which are recursive, i.e.,
that can call themselves. For instance, in mathematics, the factorial function on
natural numbers is defined as fact(n)=1×2×3×. . .×n, but it can also be defined
recursively as the function such that fact(0)=1 and fact(n)=n×fact(n-1) when
n>0: you can easily check by hand that the two functions agree on small values
of n (and prove that they agree on all values of n). This last formulation has
the advantage of immediately translating to the following implementation of
factorial:

def rec fact(n) =

if n == 0 then 1

else n * fact(n-1) end

end

for which you can check that fact(5) gives 120, the expected result. As another
example, the list.length function, which computes the length of a list, can be
programmed in the following way in Liquidsoap:

def rec length(l)

if l == [] then 0

else 1 + length(list.tl(l)) end

end

We do not detail much further this trait since it is unlikely to be used for radios,
but you can see a few occurrences of it in the standard library.

5.6. RECORDS AND MODULES 65

5.6 Records and modules

Records. Suppose that we want to store and manipulate structured data. For
instance, a list of songs together with their duration and tempo. One way to
store each song is as a tuple of type string * float * float, but there is a
risk of confusion between the duration and the length which are both floats,
and the situation would of course be worse if there were more fields. In order
to overcome this, one can use a record which is basically the same as a tuple,
excepting that fields are named. In our case, we can store a song as

song = { filename = "song.mp3", duration = 257., bpm = 132. }

which is a record with three fields respectively named filename, duration and
bpm. The type of such a record is

{filename : string, duration : float, bpm : float}

which indicates the fields and their respective type. In order to access a field of
a record, we can use the syntax record.field. For instance, we can print the
duration with

print("The duration of the song is #{song.duration} seconds")

Modules. Records are heavily used in Liquidsoap in order to structure the
functions of the standard library. We tend to call module a record with only
functions, but this is really the same as a record. For instance, all the functions
related to lists are in the list module and functions such as list.hd are fields of
this record. For this reason, the def construction allows adding fields in record.
For instance, the definition

def list.last(l)

list.nth(l, list.length(l)-1)

end

adds, in the module list, a new field named last, which is a function which
computes the last element of a list. Another shorter syntax to perform definitions
consists in using the let keyword which allows assigning a value to a field, so
that the previous example can be rewritten as

let list.last = fun(l) -> list.nth(l, list.length(l)-1)

If you often use the functions of a specific module, the open keyword allows
using its fields without having to prefix them by the module name. For instance,
in the following example

open list

x = nth(l, length(l)-1)

the open list directive allows directly using the functions in this module: we
can simply write nth and length instead of list.nth and list.length.

66 CHAPTER 5. A PROGRAMMING LANGUAGE

Values with fields. A unique feature of the Liquidsoap language is that it
allows adding fields to any value. We also call them methods by analogy with
object-oriented programming. For instance, we can write

song = "test.mp3".{duration = 123., bpm = 120.}

which defines a string ("test.mp3") with two methods (duration and bpm). This
value has type

string.{duration : float, bpm : float}

and behaves like a string, e.g. we can concatenate it with other strings:

print("the song is " ^ song)

but we can also invoke its methods like a record or a module:

print("the duration is #{song.duration}")

The construction def replaces allows changing the main value while keeping
the methods unchanged, so that

def replaces song = "newfile.mp3" end

print(song)

will print

"newfile.mp3".{duration = 123., bpm = 120.}

(note that the string is modified but not the fields duration and bpm).

Examples. The http.get function, which retrieves a webpage over http, has the
type:

(?headers : [string * string], ?timeout : float, string) ->

string.{headers : [string * string],

status_message : string,

status_code : int,

protocol_version : string}

It returns a string (the contents of the webpage) with fields specifying the
returned headers, the status message and the version used by the protocol. A
typical use is

h = http.get("http://www.google.fr/xxx")

if h.status_code < 400 then

print("Contents of the webpage: #{h}")

else

print("An error occured: #{h.status_code} (#{h.status_message})")

end

5.6. RECORDS AND MODULES 67

Another typical example is the rms operator, which takes a source as argument,
and returns the same source together with an added method named rms which
allows retrieving the current value for the rms (which is a measure of sound
intensity). The rms of a source can thus be logged every second in a file as
follows (functions concerning files and threads are explained in section 5.9):

s = playlist("~/Music")

s = rms(s)

def save_metrics() = file.write(data="RMS: #{s.rms()}", "/tmp/rms") end

thread.run(every=1., save_metrics)

output(s)

When the return type of a function has methods, the help of Liquidsoap displays
them in a dedicated section. For instance, every function returning a source,
also returns methods associated to this source, such as the skip function which
allows skipping the current track (those methods are detailed in section 6.10). If
we ask for help about the playlist operator by typing

$ liquidsoap -h playlist

we can observe this: the help displays, among other,

Methods:

* reload : (?uri : string) -> unit

Reload the playlist.

* skip : () -> unit

Skip to the next track.

This indicates that the returned source has a reload method, which allows
reloading the playlist, possibly specifying a new file, as well as the skip method
described above. If you try at home, you will see that they are actually many
more methods.

References. You should now be able to fully understand the type given to
references. We recall for instance that the type of ref(5) is

(() -> int).{set : (int) -> unit}

This means that such a reference consists of a function of type () -> int,
taking no argument and returning an integer (the current value of the reference),
together with a method set of type (int) -> unit, which takes as argument an
integer (and, when called, modifies the value of the reference according to the
argument). Since a reference r can be considered as a function, this explains
why we have been writing r() to get its value. In order to modify its value, say
set it to 7, we can call the method set and write r.set(7). In fact, the syntax r

:= 7 is simply a shorthand for this.

68 CHAPTER 5. A PROGRAMMING LANGUAGE

5.7 Advanced values

In this section, we detail some more advanced values than the ones presented in
section 5.3. You are not expected to be understanding those in details for basic
uses of Liquidsoap.

Errors. In the case where a function does not have a sensible result to return, it
can raise an error . Typically, if we try to take the head of the empty list without
specifying a default value (with the optional parameter default), an error will be
raised. By default, this error will stop the script, which is usually not a desirable
behavior. For instance, if you try to run a script containing

list.hd([])

the program will exit printing

Error 14: Uncaught runtime error:

type: not_found, message: "no default value for list.hd"

This means that the error named “not_found” was raised, with a message ex-
plaining that the function did not have a reasonable default value of the head to
provide.

In order to avoid this, one can catch exceptions with the syntax

try

code

catch err do

handler

end

This will execute the instructions code: if an error is raised at some point during
this, the code handler is executed, with err being the error. For instance, instead
of writing

l = []

x = list.hd(default=0, l)

we could equivalently write

l = []

x =

try

list.hd(l)

catch err do

0

end

The name and message associated to an error can respectively be retrieved using
the functions error.kind and error.message, e.g. we can write

5.7. ADVANCED VALUES 69

try

...

catch err do

print("the error #{error.kind(err)} was raised")

print("the error message is #{error.message(err)}")

end

Typically, when reading from or writing to a file, errors will be raised when
a problem occurs (such as reading from a non-existent file or writing a file in
a non-existent directory) and one should always check for those and log the
corresponding message:

try

file.write(data=data, "/non/existent/path")

catch err do

log.important("Could not write to file: #{err.message}")

end

Specific errors can be catched with the syntax

try

...

catch err in l do

...

end

where l is a list of error names that we want to handle here.

Errors can be raised from Liquidsoap with the function error.raise, which takes
as arguments the error to raise and the error message. For instance:

error.raise(error.not_found, "we could not find your result")

Finally, we should mention that all the errors should be declared in advance
with the function error.register, which takes as argument the name of the
new error to register:

myerr = error.register("my_error")

error.raise(myerr, "testing my own error")

Nullable values. It is sometimes useful to have a default value for a type. In
Liquidsoap, there is a special value for this, which is called null. Given a type t,
we write t? for the type of values which can be either of type t or be null: such a
value is said to be nullable. For instance, we could redefine the list.hd function
in order to return null (instead of raising an error) when the list is empty:

def list.hd(l)

if l == [] then null() else list.hd(l) end

end

70 CHAPTER 5. A PROGRAMMING LANGUAGE

whose type would be

(['a]) -> 'a?

since it takes as argument a list whose elements are of type 'a and returns a list
whose elements are 'a or null. As it can be observed above, the null value is
created with null().

In order to use a nullable value, one typically uses the construction x ?? dwhich
is the value x excepting when it is null, in which case it is the default value d.
For instance, with the above head function:

x = list.hd(l)

print("the head is " ^ (x ?? "not defined"))

Some other useful functions include

• null.defined: test whether a value is null or not,
• null.get: obtain the value of a nullable value supposed to be distinct from
null,

• null.case: execute a function or another, depending on whether a value
is null or not.

5.8 Configuration and preprocessor

Liquidsoap has a number of features (such as its preprocessor) which allow
useful operations on the scripts, but cannot really be considered as part of the
core language itself. Those are presented below.

Configuration. The main configuration options are accessed through functions
whose name are prefixed by settings. These settings affect the overall behavior
of Liquidsoap. Each setting is a reference: this means that, given a setting, we can
obtain its value by applying it to () and we can change its value by using the :=

syntax. For instance, the samplerate used for audio in Liquidsoap is controlled by
the settings.frame.audio.samplerate setting. We can thus display its current
value with

print("Samplerate is #{settings.frame.audio.samplerate()}")

and change its value to 48kHz (the default being 44.1kHz) by adding the following
command at the beginning of our script:

settings.frame.audio.samplerate := 48000

Or we can increase the verbosity of the log messages with

settings.log.level := 4

5.8. CONFIGURATION AND PREPROCESSOR 71

which sets the maximum level of shown log messages to 4, the default being 3.
We recall that the log levels are 1 for critical messages, 2 for severe issues, 3 for
important messages, 4 for information and 5 for debug messages.

You can obtain the list of all available settings, as well as their default value with
the command

liquidsoap --list-settings

For instance, the documentation about the frame.duration setting is

Tentative frame duration in seconds

Audio samplerate and video frame rate constrain the possible frame

durations.This setting is used as a hint for the duration, when

'frame.audio.size'is not provided.Tweaking frame duration is tricky but

needed when dealing with latencyor getting soundcard I/O correctly

synchronized with liquidsoap.

settings.frame.duration := 0.04

The value 0.04 at the bottom indicates the default value.

Including other files. It is often useful to split your script over multiple files,
either because it has become quite large, or because you want to be able to reuse
common functions between different scripts. You can include a file file.liq in
a script by writing

%include "file.liq"

which will be evaluated as if you had pasted the contents of the file in place of
the command.

For instance, this is useful in order to store passwords out of the main file, in
order to avoid risking leaking those when handing the script to some other
people. Typically, one would have a file passwords.liq defining the passwords
in variables, e.g.

radio_pass = "secretpassword"

and would then use it by including it:

%include "passwords.liq"

radio = ...

output.icecast(%mp3, host="localhost", port=8000,

password=radio_pass, mount="my-radio.mp3", radio)

so that passwords are not shown in the main script.

72 CHAPTER 5. A PROGRAMMING LANGUAGE

Conditional execution. Liquidsoap embeds a preprocessor which allows in-
cluding or not part of the code depending on some conditions. For instance,
the following script will print something depending on whether the function
input.alsa is defined or not:

%ifdef output.alsa

print("We have support for ALSA.")

%else

print("We don't have support for ALSA.")

%endif

This is useful in order to have some code being executed depending on the com-
pilation options of Liquidsoap (the above code will be run only when Liquidsoap
has the support for the alsa library) and is used intensively in the standard
library. The command %ifndef can similarly be used to execute code when a
function is not defined. We can also execute a portion of code whenever an
encoder is present using %ifencoder (or %ifnencoder when an encoder is not
present), the end of the code in question being delimited with %endif as above.
For instance, suppose that we want to encode a file in mp3, if Liquidsoap was
compiled with support for it, and otherwise default to wave. This can be achieved
with

%ifencoder %mp3

output.file(%mp3, "out.mp3", s)

%endif

%ifnencoder %mp3

output.file(%wav, "out.wav", s)

%endif

Finally, the command %ifversion can be used to execute some code conditionally,
depending on the version of Liquidsoap:

%ifversion >= 2.1

print("This is a very new version!")

%endif

This is quite useful in order to provide a script which is compatible with multiple
versions of Liquidsoap (note that this functionality was only introduced in
version 2.0, and thus unfortunately cannot be used in order to ensure backward
compatibility with versions earlier than this).

5.9 Standard functions

In this section, we detail some of the most useful general purpose functions
present in the standard library. The functions related to sound and streaming
are mentioned in section 5.10 and detailed in subsequent chapters.

5.9. STANDARD FUNCTIONS 73

Type conversion. The string representation of any value can be obtained with
the string function:

print(string([1,2,3]))

Most expected type conversion function are implemented with names of the form
A_of_B. For instance, we can convert a string to an integer with int_of_string:

print(1 + int_of_string("2"))

Files. The whole contents of a file can be obtained with the function
file.contents:

f = file.contents("test.txt")

print("The contents of the file is: " ^ f)

In the case where the file is big, it is advisable to use file.read, whose type is

(string) -> () -> string

and returns a function which successively reads chunks of the file until the end,
in which case the empty string is returned. The contents of a file can be dumped
using it by

f = file.read("test.txt")

r = ref(f())

while r() != "" do

print(newline=false, r())

r := f()

end

Other useful functions are

• file.exists: test whether a file exists,
• file.write: write in a file,
• file.remove: remove a file,
• file.ls: list the files present in a directory.

Also, convenient functions for working on paths are present in the file and
path module:

• file.extension: get the extension of a file,
• file.temp: generate a fresh temporary filename,
• path.dirname: get the directory of a path,
• path.basename: get the file name without the directory from a path,
• path.home: home directory of user,

and so on.

74 CHAPTER 5. A PROGRAMMING LANGUAGE

HTTP. Distant files can be retrieved over http using http.get. For instance,
the following script will fetch and display the list of changes in Liquidsoap:

c = http.get(

"https://raw.github.com/savonet/liquidsoap/master/CHANGES.md")

print("Here are the latest changes in Liquidsoap:\n\n" ^ c)

Other useful functions are

• http.post: to send data, typically on forms,
• http.put: to upload data,
• http.delete: to delete resources.

Liquidsoap also features an internal web server called harbor, which allows
serving web pages directly from Liquidsoap, which can be handy to present
some data related to your script or implement some form of advanced interaction.
This is described on details in section 6.8.

System. The arguments passed on the command line to the current script can
be retrieved using the argv function. Its use is illustrated in section 6.10.

The current script can be stopped using the shutdown function which cleanly
stops all the sources, and so on. In case of emergency, the application can be
immediately stopped with the exit function, which allows specifying an exit
code (the convention is that a non-zero code means that an error occurred). The
current script can also be restarted using restart.

In order to execute other programs from Liquidsoap, you can use the function
process.read which executes a command and returns the text it wrote in the
standard output. For instance, in the script

n = process.read("find ~/Music -type f | wc -l")

n = int_of_string(string.trim(n))

print("We have #{n} files in the library.")

we use the find command to find files in the ~/Music directory and pipe it through
wc -l which will count the number of printed lines, and thus the number of files.
In passing, in practice you would do this in pure Liquidsoap with

n = list.length(file.ls(recursive=true, "~/Music"))

There is also the quite useful variant called process.read.lines, which returns
the list of lines written on the standard output. Typically, suppose that we have
a script generate-playlist which outputs a list of files to play, one per line. We
can play it by feeding it to playlist.list which plays a list of files:

p = process.read.lines("./generate-playlist")

s = playlist.list(p)

output(s)

5.9. STANDARD FUNCTIONS 75

The more elaborate variant process.run allows retrieving the return code of
the program, set a maximal time for the execution of the program and sandbox

its execution, i.e. restrict the directories it has access to in order to improve
security (remember that executing programs is dangerous, especially if some
user-contributed data is used). This is further detailed in section 6.8.

Threads. The function thread.run can be used to run a function asynchronously
in a thread, meaning that the function will be executed in parallel to the main
program and will not block other computations if it takes time. It takes two
optional arguments:

• delay: if specified, the function will not be run immediately, but after the
specified number of seconds,

• every: if specified, the function will be run regularly, every given number
of seconds.

Phone ring. For instance, we can simulate the sound of a hanged phone by
playing a sine and switching the volume on and off every second. This is easily
achieved as follows:

volume = ref(0.)

def change()

print("Changing state.")

volume := 1. - volume()

end

thread.run(every=1., change)

s = amplify(volume, sine())

output(s)

Here, we amplify the sine by the contents of a reference volume (or, more precisely,
by a getter which returns the value of the reference). Its value is switched
between 0. and 1. every second by the function change.

Auto-gain control. A perhaps more useful variant of this is auto-gain control. We
want to adjust the volume so that the output volume is always roughly -14 lufs,
which is a standard sound loudness measure. One way to do this is to regularly
check its value and increase or lower the volume depending on whether we are
below or above the threshold:

pre = lufs(playlist("~/Music"))

volume = ref(1.)

post = lufs(amplify(volume, pre))

def adjust()

volume := volume() * lin_of_dB((-14. - post.lufs_momentary()) / 20.)

76 CHAPTER 5. A PROGRAMMING LANGUAGE

volume := max(0.01, min(10., volume()))

print(newline=false,

"LUFS: #{pre.lufs()} -> #{post.lufs()} (volume: #{volume()})\r")

end

thread.run(adjust, every=0.1)

output(post)

Here, we have a source pre which we amplify by the value of the reference
volume in order to define a source post. On both sources, the lufs function
instructs that we should measure the lufs, which value can be obtained by
calling the lufs and lufs_momentary methods attached to the sources. Regularly
(10 times per second), we run the function adjust which multiplies the volume
by the coefficient needed to reach -14 lufs (to be precise, we actually divide the
distance to -14 by 20 in order not to change the volume too abruptly, and we
constrain the volume in the interval [0.01,10] in order to keep sane values).

Of course, in practice, you do not need to implement this by hand: the operator
normalize does this for you, and more efficiently than in the above example. But
it is nice to see that you could if you needed, to experiment with new strategies
for managing the gain for instance.

Conditional execution. Another useful function is thread.when, which executes
a function when a predicate (a boolean getter, of type {bool}) becomes true.
By default, the value of the predicate is checked every half second, this can be
changed with the every parameter. For instance, suppose that we have a file
named “song” containing the path to a song, and we want that each time we
change the contents of this file, the new song is played. This can be achieved as
follows:

q = request.queue()

song = {file.contents("song")}

thread.when(getter.changes(song), {q.push(request.create(song()))})

output(q)

We begin by creating q which is a request queue, i.e. some source on which
we can push new songs (those are detailed in section 6.1) and song which is
a getter which returns the contents of the file. We then use thread.when on
the predicate getter.changes(song) (which is true when the contents of song
changes) in order to detect changes in song and, when this is the case, actually
push the song on the request queue.

As a variation on previous example, we can program a clock which will read the
time at the beginning of every hour as follows:

q = request.queue()

def read_time()

text = time.string("It is %H hours, %M minutes and %S seconds")

5.9. STANDARD FUNCTIONS 77

q.push(request.create("say:#{text}"))

end

thread.when({0m}, read_time)

output(q)

Namely, the condition 0m is true when the minute of the current time is zero,
i.e. we are the beginning of the hour: when this is the case we push in the queue
a request to say the current time. Note that even though the condition is checked
very regularly, the function read_time is called only once at the beginning of
every hour: this is because, by default, thread.when waits for the condition to
become false before executing the function again (this can be altered with the
changed parameter of thread.when).

Time. In case you need it, the current time can be retrieved using the time

function. This function returns the number of seconds since the 1st of January
1970, which is mostly useful to measure duration by considering the difference
between two points in time. For instance, we can compute the time taken by
the execution of a function f with

t = time()

f()

d = time() - t

print("The execution of f took #{d} s.")

which stores the time before and after the execution of f and displays the
difference. As a useful variant, the function time.up returns the uptime of the
script, i.e. the number of seconds since the beginning of its execution.

In order to retrieve time in more usual notations, you can use the functions
time.local and time.utcwhich return a record containing the usual information
(year, month, day, hour, etc.), respectively according to the current time zone
and the Greenwich median time. For instance, we can print the current date
with

t = time.local()

print("The current date is #{t.year}-#{t.month}-#{t.day}.")

If you do not need to manipulate time components and only print time, this can
also be more conveniently done with the time.string function which takes a
string as argument and replaces %Y by the year, %m by the month and so on, so
that we can do

print(time.string("The current date is %Y-%m-%d and we are %A."))

Finally, we mention here that the time zone can be retrieved and changed with
the time.zone function:

print("Current time zone: #{time.zone()}")

time.zone := "CET"

78 CHAPTER 5. A PROGRAMMING LANGUAGE

5.10 Streams in Liquidsoap

Apart from the general-purpose constructions of the language described above,
Liquidsoap also has constructions dedicated to building streams: after all this is
what we are all here for. Those are put to practice in chapter 6 and described
in details in chapter 8. We however quickly recap here the main concepts and
operators.

Sources. An operator producing a stream is called a source and has a type of
the form

source(audio=..., video=..., midi=...)

where the “...” indicate the contents that the source can generate, i.e. the number
of channels, and their nature, for audio, video and midi data, that the source can
generate. For instance, the playlist operator has (simplified) type

(?id : string, string) -> source(audio='a, video='b, midi='c)

we see that it takes as parameters an optional string labeled id (most operators
take such an argument which indicates its name, and is used in the logs or the
telnet) as well as a string (the playlist to play) and returns a source (which plays
the playlist. . .).

Some sources are fallible, which means that they are not always available. For
instance, the sound input from a dj over the internet is only available when the
dj connects. We recall from section 4.2 that a source can be made infallible with
the mksafe operator or by using a fallback to an infallible source.

Encoders. Some outputs need to send data encoded in some particular format.
For instance, the operator which records a stream into a file, output.file, needs
to know in which format we want to store the file in, such mp3, aac, etc. This
is specified by passing special parameters called encoders. For instance, the
(simplified) type of output.file is

(?id : string, format('a), string, source('a)) -> unit

We see that it takes the id parameter (a string identifying the operator), an
encoder (the type of encoders is format(...)), a string (the file where we should
save data) and a source. This means that we can play our playlist and record it
into an mp3 file as follows:

s = mksafe(playlist("~/Music"))

output.file(%mp3, "out.mp3", s)

Here, %mp3 is an encoder specifying that we want to encode into the mp3 formats.
Encoders for most usual formats are available (%wav for wav, %fdkaac for aac,
%opus for Opus, etc.) and are detailed section 6.7.

5.10. STREAMS IN LIQUIDSOAP 79

Requests. Internally, Liquidsoap does not directly deal with a file, but rather
with an abstraction of it called a request. The reason is that some files require
some processing before being accessible. For instance, we cannot directly access
a distant mp3 file: we first need to download it and make sure that it has the
right format.

This is the reason why most low-level operators do not take files as arguments,
but requests. The main thing you need to know in practice is that you can create
a request from a file location, using the request.create function. For instance,
in the following example, we create a request queue q, on which we can add
requests to play in it using q.push. We define a function play, which adds the file
on the queue, by first creating a request from it. We then use list.iter to apply
this function play on all the mp3 files of the current directory. The following
script will thus play all the mp3 files in the current directory:

q = request.queue()

def play(file)

r = request.create(file)

q.push(r)

end

list.iter(play, file.ls(pattern="*.mp3", "."))

output(q)

Main functions. The main functions in order to create and manipulate audio
streams are

• playlist: plays a playlist,
• fallback: plays the first available source in a list,
• switch: plays a source depending on a condition,
• crossfade: fade successive tracks,
• output.icecast, output.hls, output.file: output on Icecast, an hls
playlist, or in a file,

• request.queue: create a queue that can be dynamically be fed with user’s
requests and will play them in the order they were received.

Their use is detailed in next chapter.

80 CHAPTER 5. A PROGRAMMING LANGUAGE

81

6
Full workflow of a radio station

This chapter explains in details the main tools and techniques in order to setup
a webradio. It essentially follows section 4.2, but gives much more details about
techniques and parameters one can use to achieve his goals.

6.1 Inputs

Playlists. A radio generally starts with a playlist, which is simply a file con-
taining a list of files to be played. The playlist operator does that: it takes as a
playlist as argument and sequentially plays the files it contains. For instance,
the script

s = playlist("my_playlist")

output(s)

will play all the files listed in the my_playlist playlist. The operator also accepts
a directory as argument, in which case the playlist will consist of all the files in
the directory: the script

s = playlist("~/Music")

output(s)

will play all the files in the Music directory. The format of a playlist generally
consists in a list of files, with one file per line, such as

/data/mp3/file1.mp3

/data/mp3/file2.mp3

/data/mp3/file3.mp3

http://server/file.mp3

ftp://otherserver/file.mp3

82 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

but other more advanced playlist formats are also supported: pls, m3u, asx, smil,
xspf, rss podcasts, etc. Those are generally created by using dedicated software.

Playlist arguments. By default, the files are played in a random order but this
can be changed with the mode parameter of playlist which can either be

• "normal": play files in the order indicated in the playlist,
• "randomize": play files in a random order chosen for the whole playlist at
each round (default mode),

• "random": pick a random file each time in the playlist (there could thus be
repetitions in files).

In the first two modes, the loop argument indicates, when we have played all
the files, whether we should start playing them again or not. By default, the
playlist is never reloaded, i.e. changes brought to it are not taken in account, but
this can be modified with the parameters reload_mode (which indicates when
we should reload the playlist) and reload (which indicates how often we should
reload the playlist). For instance:

• reload the playlist every hour (1 hour being 3600 seconds):

s = playlist(reload=3600, reload_mode="seconds", "playlist")

• reload the playlist after each round (when the whole playlist has been
played):

s = playlist(reload=1, reload_mode="rounds", "playlist")

• reload the playlist whenever it is modified:

s = playlist(reload_mode="watch", "playlist")

Playlists can also be reloaded from within the scripts by calling the reload

method of a source produced by the playlist operator. For instance, reloading
every hour can also be performed with

s = playlist("playlist")

thread.run(every=3600., {s.reload()})

The reload method take an optional argument labeled uri in case you want to
specify a new playlist to load.

Another useful option is check_next, to specify a function which will determine
whether a file should be played or not in the playlist: this function takes a request
as argument and returns a boolean. For instance, we can ensure that only the
files whose name end in “.mp3” are played with

def check(r)

fname = request.uri(r)

string.contains(suffix=".mp3", fname)

6.1. INPUTS 83

end

s = playlist(check_next=check, "~/Music")

The function check takes the request r given as argument, extracts its uri, and
then returns true or false depending on whether this uri ends with “.mp3” or
not. As another example, we can base our decision on the metadata of the file as
follows:

def check(r)

m = request.metadata(r)

m["genre"] == "Rock"

end

s = playlist(check_next=check, "~/Music")

Here, we obtain the metadata with request.metadata, and declare that we should
play a file only if its genre is “Rock” (remember that the metadata are encoded
as an association list, as explained in section 5.3).

Playing lists of files. One inconvenient of the check function is that it is called
whenever the playlist operator needs to prepare a new song, presumably
because the current one is about to end. This means that if too many songs are
rejected in a row, we might fail to produce a valid next file in time. Another
approach could consist in filtering the files we want at startup: this takes longer
at the beginning, but it is more predictable and efficient on the long run. This
approach is taken in the following script to play dance music songs:

def check(f)

m = file.metadata(f)

if m["genre"] == "Dance" then

print("Keeping #{f}.")

true

else

false

end

end

l = playlist.files("~/Music/misc")

l = list.filter(check, l)

s = playlist.list(l)

We use playlist.files to obtain the list of files contained in our playlist of
interest, then we use list.filter to only keep in this list the files which are
validated by the function check, and finally we use the playlist.list operator to
play the resulting list of files (playlist.list is a variant of playlistwhich takes
a list of files to play instead of a playlist). The check function uses file.metadata
in order to obtain the metadata for each file f: this can take quite some time if
we have many files, but will be done only at the startup of the script.

84 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

Avoiding repetitions. A common problem with playlists in randomized order
is that, when the playlist is reloaded, it might happen that a song which was
played not so long ago is scheduled again. In order to avoid that, it is convenient
to use the playlog operator which records when songs were played and can
indicate when a song was last played. When called, it returns a record with two
functions:

• add which records that a song with given metadata has just been played,
• last which returns how long ago a song with given metadata was last
played, in seconds.

We can use this to reject, in a playlist, all the songs which have been played less
than 1 hour (= 3600 seconds) ago as follows:

l = playlog()

def check(r)

m = request.metadata(r)

if l.last(m) < 3600. then

log.info("Rejecting #{m['filename']} (played #{l.last(m)}s ago).")

false

else

l.add(m)

true

end

end

s = playlist(check_next=check, "playlist")

output(s)

and thus avoid repetitions when reloading.

Interesting options of the playlog operator are:

• duration specifies the time after which the tracks are forgotten in the
playlog (setting this avoids that it grows infinitely by constantly adding
new tracks),

• persistency provides a file in which the list of songs is recorded, which
allows preserving the playlog across restarts of the script,

• hash is a function which extracts the string identifying a file from its
metadata: by default, we use the filename as identifier, but we could for
instance use an md5 checksum of the file by passing the function

fun (m) -> file.digest(metadata.filename(m))

Single files. If you only need to play one file, you can avoid creating a playlist with
this file only, by using the operator singlewhich loops on one file. This operator
is also more efficient in the case the file is distant because it is downloaded once
for all:

6.1. INPUTS 85

s = single("http://server/file.mp3")

By the way, if you do not want to loop over and over the file, and only play it
once, you can use the operator once which takes a source as argument, plays
one song of this source, and becomes unavailable after that.

s = once(single("http://server/file.mp3"))

Distant streams. The operators playlist or single make sure in advance that
the files to be played are available: in particular, they download distant files so
that we are sure that they are ready when we need them. Because of this, they
are not suitable in order to play continuous streams (which are very long, or
can even be infinite), because Liquidsoap would try to download them entirely
before reading them.

This is the reason why the input.http operator should be used instead in order
to play a stream:

s = input.http("https://icecast.radiofrance.fr/fip-hifi.aac")

This operator works with streams such as those generated by Icecast, but also
with playlists containing streams. It will regularly pull data from the given
location, and therefore should be used for locations that are assumed to be
available most of the time. If not, it might generate unnecessary traffic and
pollute the logs: in this case, it is perhaps better to inverse the paradigm and
use the input.harbor operator described below, which allows the distant stream
to connect to Liquidsoap.

HLS streams. Streams in hls format are quite different from the above ones: they
consist of a rolling playlist of short audio segments, as explained in section 2.2.
This is the reason why they are handled by a different operator, input.hls:

s = input.hls("https://stream.radiofrance.fr/fip/fip.m3u8")

Interactive playlists. Instead of having a static playlist, you might want to
use you own script to generate the song which should be played next (e.g. you
might fetch requests from users from the web or a database, or you might have
a neural network deciding for you which song is the best to be played next).
In order to proceed in this way, you should use the request.dynamic operator,
which takes as argument a function returning the next song to be played: this
function has type () -> request('a), meaning that it takes no argument and
returns a request. For instance, suppose that we have a script called next-song,
which echoes on the standard output the next song to be played on the standard
output. A degenerate example of such a script, using the shell, could be

#!/bin/sh

echo "test.mp3"

86 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

which always returns test.mp3 as song to be played, but of course you could
use any program in any programming language as long as it outputs the file to
be played on the standard output. We can then query this script in order to play
song as follows:

def next()

uri = list.hd(process.read.lines("./next-song"))

request.create(uri)

end

s = request.dynamic(next)

Here, our next function executes the above script next-song, using the function
process.read.lines which returns the list of lines returned by the script. We
then take the first line with list.hd and create a request from from it using
request.create. As a variant, suppose that the next song to be played is present
in a file named song. We can play it as follows:

def next()

uri = file.contents("song")

if uri != "" then

request.create(uri)

else

null()

end

end

s = request.dynamic(retry_delay=1., next)

The check function now reads the contents of the file song and creates a request
from it. In the case where the file is empty, there is no song to play, and we return
the value null to indicate it. The retry_delay parameter of request.dynamic

indicates that, in such an event, we should wait for 1 second before trying again.
This example is not perfect: there is a chance that a given song will be played
multiple times if we don’t update the file song timely enough: we see a better
way of achieving this kind of behavior in next section.

The playlist operator. We should mention here that our beloved playlist op-
erator is actually implemented in Liquidsoap, in the standard library, using
request.dynamic. Here is a simplified version of the definition of this function:

def playlist(~randomize=true, ~reload=true, p)

l = ref(playlist.files(p))

if randomize then l := list.shuffle(l()) end

def next()

if not (list.is_empty(l())) then

song = list.hd(l())

l := list.tl(l())

request.create(song)

6.1. INPUTS 87

else

if reload then l := playlist.files(p) end

null()

end

end

request.dynamic(next)

end

When creating the playlist, we first store the list of its files is a reference l,
and randomize its order when the randomize parameter is true. We then use
request.dynamic with a next function which returns a request made from the
first element of the list (and this first element is removed from the list). When
the reload parameter is true, we reload the list with the contents of the playlist
when it becomes empty.

Request queues. In an interactive playlist, the operator asks for the next song.
But in some situations, instead of this passive way of proceeding (you are asked
for songs), you would rather have an active way of proceeding (you inform the
operator of the new files to play when you have some). Typically, if you have
a website where users can request songs, you would like to be able to put the
requested song in a playlist at the moment the user requests it. This is precisely
the role of the request.queue operator, which maintains a list of songs to be
played in a queue (the songs are played in the order they are pushed). A typical
setup involving this operator would be the following:

server.telnet()

playlist = playlist("~/Music")

queue = request.queue()

radio = fallback(track_sensitive=false, [queue, playlist])

output(radio)

We have both a playlist and a queue, and the radio is defined by using the
fallback operator which tries to fetch the stream from the queue and defaults
to the playlist if the queue is empty. The track_sensitive=false argument
instructs that we should play the stream generated by the queue as soon as it
is available: by default, switch will wait for the end of the current track before
switching to the queue.

Pushing songs in a queue. You might wonder then: how do we add new songs in
the queue? The role of the first line is to instruct Liquidsoap to start a “telnet”
server, which is listening by default on port 1234, on which commands can be
sent. The queue will register a new command on this server, so that if you
connect to it and write queue.push followed by an uri, it will be pushed into the
queue where it will wait for its turn to be played. In practice this can be done
with commands such as

88 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

echo "queue.push test.mp3" | telnet localhost 1234

which uses the standard Unix tool telnet to connect to the server supposed to
be running on the local host and listening on port 1234, and write the command
“queue.push test.mp3” on this server, to which it will react by adding the song
“test.mp3” in the queue. We refer the reader to section 6.8 for more details about
the telnet server.

If you have multiple queues in your script, you give them names by specifying
the id parameter of request.queue, which can be any string you want. In this
case, the pushing command will be ID.push (where ID should be replaced by the
actual identifier you specified), which clearly indicates in which queue you want
to push. For instance, in the script

server.telnet()

playlist = playlist("~/Music")

queue1 = request.queue(id="q1")

queue2 = request.queue(id="q2")

radio = fallback([queue1, queue2, playlist])

output(radio)

the two queues are respectively called q1 and q2, so that we can push a song on
the second queue by issuing the telnet command “q2.push file.mp3”.

It is also possible to push a request into a queue directly from Liquidsoap by
using the method push of a source defined by request.queue, or the method
push.uri to push an uri. For instance, consider the following script

playlist = playlist("~/Music")

q = request.queue()

radio = add([q, playlist])

thread.run(every=60., {q.push.uri("say:Another minute has passed!")})

output(radio)

It sets up an auxiliary queue q, and uses the function thread.run to execute every
minute a function which pushes in to the queue the uri "say:Another minute has

passed!". Because it begins by “say:” Liquidsoap will use a speech synthesis
software to turn the text into audio, and we will hear “Another minute has
passed” every minute, over the playlist (the add operator plays simultaneously
all the sources in its input list).

Implementation of queues. Incidentally, the function request.queue is imple-
mented in Liquidsoap, by using a list to maintain the queue of requests. Here is
a slightly simplified version of it:

def request.queue(~id="", ~queue=[])

queue = ref(queue)

def next()

6.1. INPUTS 89

if not list.is_empty(queue()) then

r = list.hd(queue())

queue := list.tl(queue())

log.info(label=id, "Next song will be #{request.uri(r)}.")

r

else

null()

end

end

def push(r)

log.info(label=id, "Pushing request #{r} on the queue.")

queue := list.append(queue(), [r])

end

s = request.dynamic(next)

s.{push=push}

end

Internally, it maintains a reference on a list called queue. The next function pops
the first element of the list and returns it, or null if the queue is empty, and
the push function adds a new request at the end of the list. Finally, the source
is created by request.dynamic with next as function returning the next request.
Finally, the source is returned, decorated with the method push.

Protocols. We have seen that playlists can contain files which are either local
or distant, the latter beginning by prefixes such as “http:” or “ftp:”. A protocol

is a way of turning such a prefixed uri into an actual file. Most of the time it will
consist in downloading the file in the appropriate way, but not only. Liquidsoap
supports many protocols and even the possibility of adding your own.

For instance, the youtube-dl protocol allows the use of the youtube-dl program
(or its more recent alternative yt-dlp) in order to download files from YouTube.

s = single("youtube-dl:https://www.youtube.com/watch?v=TCd6PfxOy0Y")

when playing such a file, we need to do more than simply connect to some
particular location over the internet, and have to do tricky stuff in order to fetch
the video from YouTube. Similarly, the say protocol uses text-to-speech software
(either pico2wave, or gtts, or text2wave provided by the festival project) in order
to synthesize speech. For instance,

s = single("say:Hello world!")

Incidentally, the prefix parameter of playlist can be used to add a prefix to
every element of the playlist, which is typically useful for protocols. This means
that the following will read out the paths of the files in the playlist:

s = playlist(prefix="say:","playlist")

90 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

Another very useful protocol is annotate which adds metadata to the following
song, as in

annotate:artist=The artist,comment=Played on my radio:test.mp3

In particular, this can be used to add metadata in playlists (which can contain
files beginning with annotate:), to specify the usual information such as artist
and title (although those are generally already present in files), but also internal
information such as cue in and cue out time.

The process protocol. More powerful, the process protocol allows to launch any
command in order to process files. The syntax is

process:<ext>,<cmd>:uri

where <ext> is the extension of the produced file, <cmd> is the command to
launch and uri is the uri of a file. In the string <cmd>, the substring $(input)

will be replaced by the input file and $(output) by the output file (a temporary
file whose extension is <ext>). For instance, we can convert a file test.mp3 in
stereo wav (even if the input file is mono) by:

s = single("process:wav,ffmpeg -y -i $(input) -ac 2 $(output):test.mp3")

When playing it, Liquidsoap will first download test.mp3 into some place (say
/tmp/temp.mp3) and then execute

ffmpeg -y -i /tmp/temp.mp3 -ac 2 /tmp/temp.wav

which will convert it to stereo wav, and then play the resulting temporary file
/tmp/temp.wav. The protocol process also accepts files of the form

process:<ext>,<cmd>

in which case only $(output) will be replaced in the command. For instance, the
implementation of text-to-speech in Liquidsoap essentially amounts to doing

s = single("process:wav,echo 'Hello world!' | text2wave > $(output)")

which will run

echo 'Hello world!' | text2wave > /tmp/temp.wav

and play the resulting file.

Registering new protocols. One of the most powerful features of Liquidsoap is
that it gives you the ability of registering your own protocols. For instance,
suppose that we have a program find_by_artist which takes as argument the
name of an artist and prints a list of music files from this artist. Typically, this
would be achieved by looking into a database of all your music files. For instance,
we suppose that executing

find_by_artist Halliday

6.1. INPUTS 91

will print a list of files such as

/data/mp3/allumer_le_feu.mp3

/data/mp3/l_envie.mp3

/data/mp3/que_je_t_aime.mp3

We are going to define a new protocol named artist so that, when playing a
file such as artist:Halliday, Liquidsoap will run the above command in order
to find a song. This can be done by using the protocol.add operator: its first
mandatory argument is the name of the protocol (here, artist) and the second
one is a function which takes as arguments

• a function rlog to log the resolution process (you can use it to print
whatever is useful for you to debug problems during the generation of the
file),

• a duration maxtime in seconds which the resolution should not exceed
(you should be careful about it when querying distant servers which might
take a long time for instance),

• the request,

and returns a list of file names corresponding to the request. Liquidsoap will
play the first file available in this list, and those file names might actually also
use Liquidsoap protocols. In our example, we can implement the protocol as

def artist_protocol(~rlog, ~maxtime, arg) =

rlog("Finding songs of #{arg}.")

process.read.lines("./find_by_artist #{string.quote(arg)}")

end

protocol.add("artist", artist_protocol,

doc="Find songs by artist.",

syntax="artist:<arist name>")

Weuse the protocol.add function to register our protocol artist, where the func-
tion artist_protocol, which returns the list of files corresponding to a request,
simply returns the list of all the files printed by the command find_by_artist.
The doc parameter is free form documentation for the protocol and the syntax

parameter provides an illustration of a typical request using this protocol (both
are only for documentation purposes). Once this defined, we can finally play
songs of any artist by performing requests of the form

s = single("artist:Sinatra")

and, of course, an uri such as “artist:Nina Simone” could also be used in a
playlist or pushed in a request queue.

Soundcard inputs. In order to input sound from a soundcard, you should
use functions such as input.alsa or input.pulseaudio or input.portaudio de-
pending on the library you want to use for this: the first one is a little more

92 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

efficient, because it is closer to the hardware, and the second is more portable
and widespread. For instance, you can hear your voice with

s = buffer(input.alsa())

output(s)

Basically, this script plays the stream generated by input.alsa. However, we
have to use the buffer operator in order to bufferize the stream coming from
the soundcard and deal with synchronization issues between the input and the
output, as detailed in section 6.10.

If you want to use a particular device, you should use the parameter device of
input.alsa, which takes as argument a string of the form hw:X,Y where X is the
card number and Y is the device number. The list of all devices available on your
computer can be obtained with the command

aplay -l

On my laptop this returns

card 0: PCH [HDA Intel PCH], device 0: ALC3246 Analog [ALC3246 Analog]

Subdevices: 0/1

Subdevice #0: subdevice #0

card 0: PCH [HDA Intel PCH], device 3: HDMI 0 [HDMI 0]

Subdevices: 1/1

Subdevice #0: subdevice #0

so that if I want to input from HDMI (the second one listed above), I should use
hw:0,3 as device parameter.

By default, the alsa operators have an internal buffer in order to be able to
cope with small delays induced by the soundcard and the computer. However,
you can set the bufferize parameter to false in order to avoid that in order to
reduce latencies. For instance, if you are lucky, you can hear your voice almost
in realtime, with some flanger effect added just for fun:

s = input.alsa(bufferize=false)

output.alsa(bufferize=false, flanger(s))

Beware that by reducing the buffers, you are likely to hear audio glitches due to
the fact that blank is inserted when audio data is not ready soon enough. In this
case, you should also see the following in the logs

Underrun! You may minimize them by increasing the buffer size.

which indicates that you should buffer in order to avoid defects in the audio.

Distant inputs with harbor. Many programs are able to stream to an Ice-
cast server, and we can use those as an input for Liquidsoap scripts with the

6.1. INPUTS 93

input.harbor operator. This operator instructs Liquidsoap to run an Icecast-
compatible server, called harbor . Clients can then connect to it, as they would
do on any Icecast server, and the stream they send there is then available as a
source in your script. This can be useful to relay an intermittent live stream
without having to regularly poll the Icecast server to find out when it is available.
It can also be used to have interventions from distant live speakers and DJs: for
instance the Mixxx1 software can be used to easily make mixes from home. A
typical setup would be

playlist = playlist("~/Music")

live = input.harbor("live", port=8000, password="hackme")

radio = fallback(track_sensitive=false, [live, playlist])

output(radio)

In this example, we use the playlist source by default, but we give priority to the
live source, which is a harbor input, available only when some client connects
to it. Apart from the parameters specifying the port and the password to use
when connecting to the server, the unlabeled argument specifies themountpoint:
this should be specified by the client when connecting, which means that a same
harbor server can simultaneously relay multiple sources, as long as they use
different mountpoints.

Sending sound to harbor. In order to test the above script, we need some software
which can send streams using the Icecast protocol to the harbor input. Ours
obviously being Liquidsoap, after having started the above script, you can run
the second script

s = mksafe(playlist("~/Music"))

output.icecast(host="localhost", password="hackme", mount="live",

%mp3, s)

which will stream connect to the harbor Icecast server and stream our music
library in mp3 format. Of course, localhost should be changed by the name (or
ip) of the server if you are not running the client on the same machine.

Another possibility would be to use the shout program which can be used to
directly send music files to Icecast. For instance,

cat test.ogg | shout --format ogg --host localhost --pass hackme

--mount /live↪→

will send the file test.ogg to our harbor server.

Yet another possibility consists in using the darkice program which captures
the microphone of the computer and sends it to an Icecast server. We can use it
to stream our voice with

1https://mixxx.org/

https://mixxx.org/

94 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

darkice -c darkice.cfg

where darkice.cfg is a configuration file specifying the parameters of the pro-
gram, such as

[general]

duration = 0

bufferSecs = 5

[input]

device = pulseaudio

sampleRate = 44100

bitsPerSample = 16

channel = 2

paSourceName = default

[icecast2-0]

format = mp3

bitrateMode = abr

bitrate = 128

quality = 0.8

server = localhost

port = 8000

password = hackme

mountPoint = live

Securing harbor. Since harbor exposes a server to the internet, you should be
serious about security and think thoroughly about who should be having access
to this server. The fact that the server is programmed in OCaml makes it quite
unlikely that an exploit such as a buffer overflow is possible, but one never
knows.

First, the list of ip which are allowed to connect to harbor can be changed with
the following setting:

settings.harbor.bind_addrs := ["0.0.0.0"]

It takes as argument a list of allowed ip, the default one 0.0.0.0 meaning that
every ip is allowed.

In practice, it is often quite difficult to know in advance the ip of all the clients,
so that the main security is given by the password which is passed as argument
of input.harbor: please choose it wisely, and avoid at any means the default
password “hackme”. Even with a strong password, the security is not very good: if
some client leaks the password or youwant to revoke a client, you have to change
it for every client which is not convenient. For this reason, the authentication
can also be done through a function, which is passed as the auth argument of

6.1. INPUTS 95

input.harbor and is of type

({user : string, password : string, address : string}) -> bool

It takes as argument a record containing the username, the password and the ip
address of a client trying to log in and returns whether it should be allowed or
not. Typically, you would like to call an external script, say harbor-auth, which
will take the username and password as argument and print “allowed” if the user
is allowed (such a command would usually look into a database to see whether
the credentials match, and perhaps do additional checks such as ensuring that
the user has the right to connect at the given time).

def auth(login)

ans = process.read.lines("./harbor-auth \

#{string.quote(login.user)} #{string.quote(login.password)}")

if list.hd(default="", ans) == "allowed" then

true

else

log.important("Invalid login from #{login.user}")

false

end

end

s = input.harbor("live", port=8000, auth=auth)

output(s)

Here, our function auth begins by executing the script harbor-auth with the
username and password as argument. Note that we use string.quote to escape
shell special characters, so that the user cannot introduce shell commands in his
username for instance. . . The process.read.lines function returns the list of
lines returned by our script and our function returns true or false depending
on whether this first line is “allowed” or not. In this way you could easily query
an external database of allowed users.

Finally, the clients should be able to determine that they are really connectedwith
your server and not some hacker’s one. The best way to achieve that is to use ssl
certificates, which can be handled with the input.harbor.ssl variant of the har-
bor source, which is present only if Liquidsoap has been compiled with ssl sup-
port. The certificate can be specified with the setting harbor.ssl.certificate

(the setting harbor.ssl.private_key can also be used to specify the private key
and harbor.ssl.password the password to unlock the private key). Obtaining a
proper ssl certificate can be tricky. You may want to start with a self-signed cer-
tificate first, which you can for instance obtain from Let’s Encrypt

1. Alternatively,
a self-signed certificate for local testing you can use the following one-liner:

openssl req -x509 -newkey rsa:4096 -sha256 -nodes -keyout server.key

-out server.crt -subj "/CN=localhost" -days 3650↪→

1https://letsencrypt.org/

https://letsencrypt.org/

96 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

Webcast. For interventions by external collaborators, it can be problematic to
have them perform a “complex setup” such as installing Liquidsoap or run
darkice. For this reason, we have developed a protocol which allows streaming
sound directly from the browser, be it from music files or the microphone,
without having to install anything: this protocol is calledwebcast and we provide
a JavaScript implementation webcast.js1, which should be easy to integrate in
your own website, based on websockets and media recorder api. Of course,
input.harbor has support for it and will accept clients using the webcast protocol
in addition to the traditional Icecast protocol.

A full-fledged website based on this library, called Webcaster, is available2. It
provides a web interface which looks like this:

As you can see, it allows performing simple dj interventions, by mixing between
two playlists and the microphone input. And should you need more, the source
code is available3. In the lower-left corner is the uri we should connect to, in
the following form:

ws://username:password@host:port/mountpoint

For instance, with the above harbor input example, we should thus use the uri

ws://user:hackme@localhost:8000/live

(the username is not taken in account when using the basic password authenti-
cation).

1https://github.com/webcast/webcast.js
2https://webcast.github.io/webcaster/
3https://github.com/webcast/webcaster

https://github.com/webcast/webcast.js
https://webcast.github.io/webcaster/
https://github.com/webcast/webcaster

6.1. INPUTS 97

External inputs. In case you are still not satisfied (for instance, if you have
very specific needs or are the proud owner of hardware which is not widely
supported), it is possible to use any program as an input, as long as this program
echoes audio on its standard output either in wav or in raw audio format, with
the operators input.external.wav and input.external.rawaudio. Here, “raw
audio” data consists in interleaved samples encoded as signed 16 bits little-
endian integers (the use of the wav format is preferable to avoid confusions
about the encoding format). For instance, we can play a sine wave which is
generated by the program ffmpeg with

cmd = "ffmpeg -f lavfi -i sine=frequency=440 -ac 2 -f wav -"

s = input.external.wav(cmd)

or with

cmd = "ffmpeg -f lavfi -i sine=frequency=440 -ac 2 -f s16le -"

s = input.external.rawaudio(cmd)

The argument cmd is the program which is going to be executed: here, we use
ffmpeg, which is instructed to generate a sine at 440 Hz (-i sine=frequency=440)
in stereo (-ac 2), encode it inwav (-f wav) or raw format (-f s16le), and output
it on the standard output (-).

FFmpeg input. The above examples are only to illustrate the use external pro-
grams as input, but you would not use it with ffmpeg in practice because Liq-
uidsoap has builtin support for it, through the input.ffmpeg operator. A more
natural way of writing the above to generate a sine through FFmpeg would thus
be

s = input.ffmpeg(format="lavfi", "sine=frequency=440")

GStreamer input. Finally, another very general possibility for input is to use
the input.gstreamer.audio operator in order to use the GStreamer library to
generate audio. The generation itself is described through a pipeline which
consists in a sequence of GStreamer operators separated by “!”: a pipeline
“a ! b” means that the output of operator “a” should be fed to operator “b”. We
refer the reader to the documentation of the library for more information about
it. In Liquidsoap, the pipeline can be passed in the argument labeled pipeline,
as expected. For instance, we can generate a sine wave (again) with

s = input.gstreamer.audio(pipeline=

"audiotestsrc ! audioamplify amplification=1.5")

where we use the operator audiotestsrc to generate a sine, which we pipe to
the audioamplify operator to change its volume. Similarly, we can play the file
test.mp3 with

s = input.gstreamer.audio(pipeline='filesrc location="test.mp3"')

98 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

In practice, no one would use the above example as is, because Liquidsoap
already has builtin support for using GStreamer to decode files. . .

JACK input. If the other program has support for it, it is possible to use jack
with the input.jack operator. This library is dedicated to the communication
of audio data between programs and greater stability and precision is expected
than with the above method. Its use is detailed in section 6.8.

SRT. In order to transmit a stream between two machines on the same local
network, one can use the Icecast protocol (i.e. input.harbor or input.http) but
this is not satisfactory: firstly, the has to be compressed (the Icecast protocol
does not allow sending uncompressed data such as wav, it can however send
lossless compressed data with the flac codec) and, secondly, it induces much
delay in the stream due to the various buffers used by Icecast.

A much better solution consists in using the srt (for Secure Reliable Transport)
protocol, which allows reliable data transmission with low latency, and can be
performed using the input.srt operator. A minimal script could be

s = input.srt()

output.pulseaudio(fallible=true, buffer(s))

Note that we need to use the buffer operator here because srt uses its own
synchronization mechanism, which is different from the one on the output based
on the Pulseaudio library, see section 6.10. The input is not available unless it
receives some stream, which is why we pass fallible=true to buffer. We can
send such a stream with ffmpeg for instance: the script

ffmpeg -re -i test.mp3 -f mp3 -c:a copy srt://localhost:8000

sends the contents of the test.mp3 using srt on the host localhost (you should
of course change this if you are connecting to a distant machine) on the port 8000,
which is the default one. The -re option ensure that the file is sent progressively
and not all at once. Another option to send an srt stream is, of course, to use
Liquidsoap. We can use the script

s = playlist("~/Music")

output.srt(fallible=true, host="localhost", %wav, s)

to stream our music library to the above srt input in wav format (you could
use %mp3 instead of %wav to compress in mp3 in order save bandwidth).

6.2 Scheduling

Now that we have a wide panel of sources, we need to combine them.

6.2. SCHEDULING 99

Fallback. The first way of combining sources is through the fallback operator,
which takes as argument a list of sources, and plays the first one which is
available, i.e. can produce some stream. We have already seen examples of this
with request queues (section 6.1) such as

radio = fallback([queue, playlist])

Here, wewant to play a song from the request queuewhen there is one, otherwise
we play songs from the playlist. By default, if we are playing a song from the
playlist and there is a new song in the queue, the operator will wait for the
current playlist song to finish before playing the one from the queue. This
behavior can be changed by setting the track_sensitive parameter to false, in
which case the song from the queue will be immediately played:

radio = fallback(track_sensitive=false, [queue, playlist])

Typically, you would use this to switch to a live show when available

playlist = playlist("~/Music")

live = input.harbor("live", port=8000, password="hackme")

radio = fallback(track_sensitive=false, [live, playlist])

or to feature live interventions when someone is speaking on the microphone

mic = buffer(input.alsa())

mic = blank.strip(max_blank=2., min_noise=.1, threshold=-20., mic)

music = playlist("~/Music")

radio = fallback(track_sensitive=false, [mic, music])

In this last example, we are using the operator blank.strip to make the source
mic unavailable when there are at least 2 seconds of silence (the duration is
controlled by the max_blank argument, and the threshold argument indicates
that we consider anything below -20 dB as silence): in this case, the fallback

operator will default to the music playlist until someone is speaking again.

In order to make a source s always available, it is quite common to stream blank
when the source is not available, i.e. re-define the source

s = fallback(track_sensitive=false, [s, blank()])

with a fallback on blank. Since this is quite common in scripts, the function
mksafe is defined in the standard library as a shorthand, and the above is equiv-
alent to writing

s = mksafe(s)

Skipping fallback. In a fallback situation where we have a live source and a music
playlist as above, the solution we provided is not entirely satisfactory: when
the live source ends, the music source is played again where we left it, whereas

100 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

it is often the case that we want to start on a fresh track. The fallback.skip

operator allows precisely this: the script

radio = fallback.skip(live, fallback=music)

will play the live source and default to the music source, like a regular track
insensitive fallback operator, but it will also skip the current track of the music

source after switching to the live source, so that we will begin on a fresh track
when switching back again to music.

Switching and time predicates. Another way of selecting a source among
multiple ones is the switch operator. It takes as argument a list, whose elements
are pairs consisting of a predicate and a source. Here, each predicate is function
taking no argument an returning a boolean (it is of type () -> bool) indicating
whether the corresponding source should be played or not: a typical predicate
is {8h-10h} which is true when the current time is between 8h and 10h. The
switch operator will select and play the first source whose predicate returns
true.

For instance, supposing that we have two different playlists for night and day,
we could alternate between those depending on the hour with

radio = switch([({0h-7h}, night), ({7h-24h}, day)])

Here also, the track_sensitive parameter controls whether a change of source
only occurs at track boundaries (when true, which is the default) or as soon as
possible.

If you want to make sure that there is always something to play, the condition
of the last source should always be true, i.e. you can use {true}. For instance,

radio = switch([

({6h-9h}, morning),

({20h-24h}, evening),

({true}, music)

])

will have two special programs on the morning and the evening, and will default
to the music playlist at other times. We thus obtain the same behavior as if we
had used a fallback operator:

radio = switch([({6h-9h}, morning), ({20h-24h}, evening)])

radio = fallback([radio, music])

Time predicates. In the above examples, {0h-7h} is a time predicate: it is some-
thingwhich is true or false depending on the current time. Some other examples
of time predicates are

6.2. SCHEDULING 101

{11h15-13h} between 11h15 and 13h
{12h} between 12h00 and 12h59
{12h00} at 12h00
{00m} on the first minute of every hour
{00m-09m} on the first 10 minutes of every hour
{2w} on Tuesday
{6w-7w} on weekends

Above, w stands for weekday: 1 is Monday, 2 is Tuesday, and so on. Sunday is
both 0 and 7.

Other predicates. We could also use this operator to manually switch between
sources. As an illustration, supposing that we have two radio streams named
radio1 and radio2, we could use a script such as

radio = switch(track_sensitive=false, [(p, radio1), ({true}, radio2)])

where the predicate p determines when radio1 should be played. For instance,
if we want to play it when a file select-radio contains “1”, we could define it as

p = {file.contents("select-radio") == "1"}

Another way to achieve this could be use an “interactive boolean”, as detailed in
section 6.8, and defined instead

server.telnet()

p = interactive.bool("r1", false)

The interactive boolean is a sort of reference whose value can be changed over
the telnet by issuing commands such as “var.set r1 = true”, which sets the
value of the boolean named r1 to true. Therefore, we can switch to radio 1 by
typing the command

echo "var.set r1 = true" | telnet localhost 1234

and back to radio 2 with

echo "var.set r1 = false" | telnet localhost 1234

(or directly connecting to the telnet server and issuing the commands, see
section 6.8).

Adding. Instead of switching between two sources, we can play them at the
same time with the add operator, which takes a list of sources whose sound are
to be added. For instance, if we want to make a radio consisting of a microphone
input together with background music (which is often called a “bed”), we can
define

102 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

radio = add([mic, bed])

This will play the two sources mic and bed at equal volume. By default, the
volume of the output is divided by 2 (because there are 2 sources) in order not
increase the loudness too much. If you want to keep the original volume of the
sources, you should set the normalize parameter to false:

radio = add(normalize=false, [mic, bed])

but beware that this might result into some clipping if the two sources are loud,
which is never nice to hear, see also section 6.5.

As a side note, the operator add only adds the sources which are ready. This
means that if mic is taken from a harbor input such as

mic = input.harbor("mic")

and the client did not connect or was disconnected, we will hear only the bed,
as expected.

Weights. The add operator also offers the possibility of weighting the sources,
i.e. specifying their relative volume: if we want to hear the microphone twice as
loud as the bed, we should give the microphone twice the weight of the bed. The
weight of each source can be specified in a list passed in the weights arguments.
For instance,

radio = add(weights=[2., 1.], [mic, bed])

assigns the weight 2. to mic and 1. to bed. This is equivalent to amplifying each
of the sources with the corresponding factor, i.e.

radio = add([amplify(2., mic), amplify(1., bed)])

but more efficient and natural.

Sequencing. The sequence operator allows a behavior which sometimes useful:
it takes as argument a list of sources and plays one track from each source in
order, and finally keeps on playing tracks from the last source. This means that

s = sequence([s1, s2, s3])

will play one track from s1, one track from s2 and will then keep on playing s3.
We will for instance use this in section 6.4 in order to insert jingles during
transitions.

Jingles and ads. Jingles are short announcements, generally indicating the
name of the radio or the current show. They are quite important in order for the
listener to remember the brand of your radio and create some familiarity with the
radio (the music changes, but the jingles remain the same). Technically, jingles
are not different from any other music source, but we give here the usual ways

6.2. SCHEDULING 103

of inserting those, presenting tricks which might be useful in other situations
too (in particular, ads follow basically the same techniques). We suppose here
that we have a source music which plays our music and a source jingles which
plays jingles: typically, it will be defined as

jingles = playlist("jingles")

where jingles is a playlist containing all our jingles.

Rotating tracks. The most basic strategy consists in inserting one jingle every
n tracks, which is easily achieved thanks to the rotate operator. It takes a list
of sources and a list of weights associated to each source (in the argument
labeled weight), and selects tracks from the sources according to the weights.
For instance, in the following script

radio = rotate(weights=[1, 4], [jingles, music])

we play jingles with weight 1 and music with weight 4: this means that we are
going to play one jingle, then four music tracks, then one jingle, then four music
tracks, and so on.

If you want something less regular, the random operator can be used instead of
rotate:

radio = rotate(weights=[1, 4], [jingles, music])

It is basically a randomized version of the previous source, which will randomly
chose tracks from jingles and music, the probability of choosing a track from
the latter being four times the probability of choosing a track from the former.

The rotate and random operators can also be used to vary the contents of a
source. For instance, if we wanted our jingles sources to play alternatively a
jingle, a commercial and an announcement for a show, we could have defined

jingles = rotate([

playlist("jingles"),

playlist("commercials"),

playlist("announcements")

])

Playing jingles regularly. Another approach for jingles consists in playing them
at regular time intervals. This is easily achieved with the delay operator function
which prevents a source from being available before some time. For instance,
we can play a jingle roughly every 30 minutes with

radio = fallback([delay(1800., jingles), music])

Above, the function delay above enforces that, after playing a track, the jingles
source will not be available again before 1800 seconds, which is 30 minutes.
Therefore, every time the current music track ends and more than 30 minutes

104 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

has passed since the last jingle, a new one will be inserted. As a variant, we can
add the jingle on top of the currently playing music with

radio = add([delay(1800., jingles), music])

Jingles at fixed time. Instead of inserting jingles regularly, you might want to
insert them at fixed time. This is quite a common approach, but a bit tricky to
achieve. Suppose that we want to play a jingle at the beginning of each hour,
without interrupting the current track. One would typically write a script such
as

radio = switch([

({00m}, jingles),

({true}, music)

])

which states that when the current minute of the time is “00”, we should play
the jingles source. But this is not really good: if a track from the music source
starts at 11h58 and ends at 12h01 then no ad will be played around noon. In
order to accommodate for this, we are tempted to widen the time predicate and
replace the second line with

({00m-15m}, jingles),

Well, this is not good either: if a track of the music source ends at 12h01, we
now hear a jingle as expected, but we actually continuously hear jingles for 14
minutes instead of hearing only one. In order to fix this, we are tempted to use
the once operator and change the line to

({00m-15m}, once(jingles)),

This is not good either: once(jingles) plays only one track from jingles, but
during the whole execution of the script. This means that our script will only
work as expected on the first hour, where we will correctly hear one jingle, but
on the following hours we will hear no jingle because one has already been
played. An acceptable solution consists in using delay to ensure that we should
wait at least 30 minutes before playing another jingle and replace the second
line by

({00m-15m}, delay(1800., jingles)),

it says that we should play a jingle in the first quarter of every hour and not more
often than once every half hour, and achieves precisely what we want. Note
that anything from 900. (15 minutes) to 2700. (45 minutes) would be acceptable
as argument for the delay.

As a last remark, if we want to play the jingle exactly at the top of the hour,
and interrupt the currently playing song if necessary, it is enough to add
track_sensitive=false to the switch operator:

6.2. SCHEDULING 105

radio = switch([

(predicate.once({00m-15m}), jingles),

({true}, music)

])

Jingles at fixed time: alternative approach. In the previous example, an alter-
native approach instead of using the delay operator, consists in using the
predicate.once function. It takes a predicate p as argument, and returns a
predicate which is true only once each time p is continuously true. In case it
helps, we have illustrated in the following figure an example of a predicate p over
time (below) and the resulting predicate predicate.once(p) over time (above):

timefalse

true p

timefalse

true predicate.once(p)

This means that predicate.once({00m-15m}) is a predicate which is true once
between in the first quarter of every hour, and can thus be used to play on jingle
in the first quarter of every hour as follows:

radio = switch([

(predicate.once({00m-15m}), jingles),

({true}, music)

])

As a variant, if we wanted to play a jingle every half hour, we could replace the
second line by

(predicate.once({00m-15m or 30m-45m}), jingles),

As another variant, if we wanted to play 3 jingles, we could write

(predicate.at_most(3, {00m-15m}), jingles),

where predicate.at_most is similar to predicate.once, but is true a given num-
ber of times instead of only once (its it pointless to play 3 jingles in a row, but
this can be quite useful for ads for instance).

If we want to add the jingle on top of the currently playing music, we can use the
function source.available which takes as arguments a source and a predicate,
and makes the source available only when the predicate is satisfied. We can then
add the music with the jingles source made available once every half hour as
follows:

106 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

radio = add([

source.available(jingles, predicate.once({0m-10m or 30m-40m})),

music

])

Signaling. As a more advanced use of predicates, we would like to introduce the
predicate.signal function which creates a particular predicate which is false
most of the time, unless some other part of the program sends a “signal”, in
which case the predicate becomes true once and then false again, until the next
signal. Concretely, we can use this function to create a predicate p by

p = predicate.signal()

The predicate p is false by default, in order to make it true we can send a signal
by calling its method signal, i.e. writing p.signal(). For instance, in the script

p = predicate.signal()

radio = switch([(p, jingles), ({true}, music)])

thread.run(every=1200., {p.signal()})

we use predicate.signal to create a predicate pwhich controls playing jingles (if
there is no jingle to play we default to the music source). We then use thread.run
to execute p.signal() every 20 minutes (or 1200 seconds). This means that every
20 minutes (or a bit more because we are waiting for the current track of music
to end), we will hear a jingle.

Of course, this is not the way one would typically regularly insert jingles, but
this can easily be modified to insert jingles by interacting with the environment.
For instance, we can register a command on the telnet server as follows:

def cmd(_)

p.signal()

"Jingle inserted!"

end

server.register("insert_jingle", cmd)

The function cmd, when called with some argument, will run p.signal() and
return a string indicating that the jingle has been inserted. We then use the
server.register function to instruct Liquidsoap that the function cmd should be
called when a user runs the command insert_jingle on the telnet server. This
means that if you connect to the telnet server and type insert_jingle, a jingle
will be inserted after next track, which could be quite useful if you are designing
some sort of graphical interface for your radio.

Inserting jingles on metadata. We will also see in section 6.3 that the insertion of
jingles can also conveniently be triggered by metadata in sources.

6.3. TRACKS AND METADATA 107

Inserting jingles in transitions. Yet another method for inserting transition con-
sists in adding them in transitions between tracks, this is detailed in section 6.4.

6.3 Tracks and metadata

Liquidsoap has a notion of track in stream, which is generally used to mark the
boundary between two successive songs. We have seen that many functions
to control the stream (fallback, switch, etc.) have the ability to detect tracks
and only change stream when a track is over in order not to abruptly interrupt
a playing song (this behavior can be altered by setting the track_sensitive

parameter to false).

To every track is associated metadata, which is information concerning the song
which is going to be played. In Liquidsoap, metadata can actually be present at
any time, and does not have to correspond to a track boundary (we can have
metadata in the middle of a song) although this is generally the case. We have
seen in section 5.3 that metadata is generally coded as an association list: this
is a list consisting of pairs of strings, whose type is thus [string * string].
Typically, the metadata m for a track will look like

m = [("artist", "Sinatra"), ("title", "Fly me")]

which indicates that the artist is “Sinatra” and the title is “Fly me”. Typical
metadata fields are: artist, title, album, genre, year and comment.

Manipulating metadata. In order to retrieve the title in such a list, one can use
the notation

m["title"]

which returns the value associated to the field title in the metadata m, the empty
string "" being returned in the case where the metadata is not present. Changing
the value of some metadata is simply obtained by putting the new metadata at
the top, by using the function list.add or list.append. For instance, we can
define a metadata m' where the artist has been changed and the year has been
added by

m' = list.append([("artist", "S"), ("year", "1964")], m)

or, if we only want to change the year,

m' = list.add(("year", "1964"), m)

Metadata in requests. Metadata are usually stored within files: for instance, mp3
files generally contain metadata encoded in the ID3v2 format. Typical operators
reading files, such as playlist, automatically read those when opening a file.
We recall that it is also possible to add metadata to files in playlists using the
annotate protocol. For instance,

108 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

annotate:artist=The artist,comment=Played on my radio:test.mp3

Incidentally, the prefix parameter of the playlist operator can be used to add a
prefix to every file in the playlist. It can in particular be used to annotate every
file in order to add some metadata. For instance, if we want to set the metadata
jingle to true for every track in our playlist, we can write something like

s = playlist(prefix="annotate:jingle=true:", "~/Music")

Handling tracks. Every source has on_track and on_metadata methods, which
respectively enforce the execution of a function when a track boundary or
metadata occur in the stream. In both cases, the method takes as argument a
function of type

([string * string]) -> unit

This function will itself be called with the metadata as argument when a track
or metadata occurs.

Logging tracks. We can for instance use this mechanism to log every song which
has gone on air:

def log_song(m)

artist = m["artist"]

title = m["title"]

file.write(append=true, data="#{artist} - #{title}\n", "/tmp/songs")

end

radio = playlist("~/Music")

radio.on_track(log_song)

We first define a function log_song which takes the metadata m as argument,
extracts the artist and the title, and appends those to the file /tmp/songs. We then
run the method on_track of our music source to register this function to be called
when there is a new track and that’s it! By the way, if you want a quick and effec-
tiveway of logging themetadata, we advise the use the metadata.json.stringify
function, which will convert all the metadata at once into a standardized textual
representation in json format:

def log_song(m)

file.write(append=true, data="#{metadata.json.stringify(m)}\n",

"/tmp/songs")↪→

end

Logging the next track. It is sometimes convenient to store the metadata for the
next song to be played, for instance to announce it on a website. This is difficult
in general because Liquidsoap does not compute much of the stream in advance.
However, if you are using a playlist, this can be achieved as follows:

6.3. TRACKS AND METADATA 109

def log_next(r)

m = request.metadata(r)

file.write(data="#{metadata.json.stringify(m)}", "/tmp/next-song")

true

end

radio = playlist("~/Music", check_next=log_next)

Here, we are (ab)using the check_next argument which specifies a function
which is called in order to validate the next song: we register our log_next

function which always validates the next song (it always returns true), but
logs the metadata of the song in between. This works because, by default,
the playlist operator always loads one song in advance (this number can be
changed with the prefetch parameter), which will be validated by our log_next
function, thus providing us with its metadata.

Adding jingles on metadata. The functions on_track and on_metadata can also
be used in order to insert jingles (or ads) when some metadata is present. For
instance, we suppose that we have a music source s, perhaps generated by a
playlist: when a track has the metadata jingle set to true, we want to play a
jingle beforehand. One way to perform this is

q = request.queue()

def insert_jingle(m)

log.info("Got metadata")

if m["jingle"] == "true" then

log.info("Inserting jingle")

q.push.uri("jingle.mp3")

end

end

s.on_track(insert_jingle)

s = fallback(track_sensitive=false, [q, s])

output(s)

It consists in creating a queue q and executing a function insert_jingle when a
track is present: this function will look whether the value of the jinglemetadata
is true, and if this is the case it will insert a jingle (the file jingle.mp3) into the
queue, which will then be played by a usual fallback mechanism. As an easy
variant of the above script, we can read out the last song which was played on
air, by inserting in a queue a request to read it using the say protocol:

q = request.queue()

def insert_title(m)

q.push.uri("say:Last song was #{m['title']} by #{m['artist']}")

end

s.on_track(insert_title)

110 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

s = fallback([q, s])

output(s)

Another approach to insert jingles when particular metadata is present could
consist in using the predicate.signal function detailed above to trigger playing
one track of a jingles playlist when the metadata is present:

jingles = playlist("jingles")

p = predicate.signal()

def insert_jingle(m)

log.info("Got metadata")

if m["jingle"] == "true" then

log.info("Inserting jingle")

p.signal()

end

end

s.on_track(insert_jingle)

s = switch([(p,jingles), ({true},s)])

output(s)

Prepending and appending tracks. The logic of the above scripts can be somewhat
simplified by the use of the prepend operator: this operator takes as argument a
function which is called on every track, with its metadata as source, and returns
a source to be played before the current track. For instance, we can insert a
jingle when the metadata jingle is set to true by:

def insert_jingle(m)

log.info("Got metadata")

if m["jingle"] == "true" then

log.info("Inserting jingle")

jingles

else

source.fail()

end

end

s = prepend(s, insert_jingle)

output(s)

The function insert_jingle looks at the metadata, and if present returns the
jingles source, containing all the jingles, of which one track will be played. If
the metadata is not present, we return fail() which is a source which is never
available: in this case, prepend will simply not insert any track because none is
ready. The function is then registered with the prepend operator.

Of course, there is a dual operator append which allows appending a track for
every track: contrarily to prepend, it inserts the track after the currently playing
track. For instance, we can read the song which we have just played with

6.3. TRACKS AND METADATA 111

def insert_title(m)

single("say:Last song was #{m['title']} by #{m['artist']}")

end

s = append(s, insert_title)

output(s)

Rewriting metadata. If you want to systematically modify the metadata, you
can use the metadata.map function which will modify the metadata of a source: it
takes as argument a function and a source, and uses the function to systematically
change the metadata. The type of the function is

([string * string]) -> [string * string]

it takes the current metadata and returns the new metadata to be inserted. For
instance, we can add the year in the title and a comment into the metadata of
our source s with

def update_metadata(m)

[

("title", "#{m['title']} (#{m['year']})"),

("comment", "Encoded by Liquidsoap!")

]

end

s = metadata.map(update_metadata, s)

Whenever a metadata passes on the source s, the function update_metadata is
executed with it and returns the metadata to insert. Here, it states that we
should set the title to "<title> (<year>)" (where <title> is the title and <year>

is the year present in the original metadata) and that we should advertise about
Liquidsoap in the comment field.

As another example, suppose that your files do not have proper metadata, for
instance, there could be no metadata at all. Even in this case, Liquidsoap will add
some metadata in order to indicate internal information such as the filename,
more details are given in section 8.4. We could thus use the filename as the title
as follows:

def update_metadata(m) =

title = path.remove_extension(path.basename(m["filename"]))

[("title", title)]

end

s = metadata.map(update_metadata, s)

The function path.basename gives the filename without the leading path and
path.remove_extension removes the extension of the file.

Removing tracks and metadata. In order to remove the tracks indications
from a source, the merge_track operator can be used: it takes a source s as

112 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

argument and returns the same source with the track boundaries removed.

Similarly, drop_metadata removes all metadata from a source. This can be useful
if you want to “clean up” all the metadata before inserting your own, as indicated
below.

Inserting tracks and metadata. If you want to insert tracks or metadata at
any point in a source, you can use insert_metadata: this operator takes a source
as argument and returns the same source with a new method insert_metadata

whose type is

(?new_track : bool, [string * string]) -> unit

It takes an argument labeled new_track to indicate if some track should be
inserted along with the metadata (by default, it is not the case) and the metadata
itself, and inserts the metadata into the stream. For instance, suppose that we
have a source s and we want to set the title and artist metadata to “Liquidsoap”
every minute. This can be achieved by

s = insert_metadata(s)

thread.run(every=60., {

s.insert_metadata([("artist", "Liquidsoap"),("title", "Liquidsoap")])

})

Here, we add the ability to insert metadata in the source s with the operator
insert_metadata, and we then use thread.run to regularly call a function which
will insert metadata by calling s.insert_metadata.

Similarly, we can add a telnet command to change the title metadata of a source
s by

s = insert_metadata(s)

def cmd(t)

s.insert_metadata([("title", t)])

"Title set to #{t}."

end

server.register("set_title", cmd)

We begin by defining a function cmd which takes the title as argument, inserts it
into the stream of s, and returns a message saying that the title was inserted.
We then register this command as set_metadata on the telnet server, as detailed
in section 6.8: when we enter the command

set_title New title

on the telnet, the title will be set to “New title”. In fact, the standard library
offers a generic function in order to do this and we do not have to program this
by ourselves: the function server.insert_metadata takes an identifier id and a

6.3. TRACKS AND METADATA 113

source as argument and registers a command id.insert on the telnet which can
be used to insert any metadata. A typical script will contain

s = server.insert_metadata(id="src", s)

and we can then set the title and the artist by running the telnet command

src.insert title="New title",artist="Liquidsoap"

(the argument of the command is of the form key1=val1,key2=val2,key3=val3,...

and allows specifying the key / value pairs for the metadata).

Skipping tracks. Every source has a method skip whose purpose is to skip the
current track and go to the next one. For instance, if our main source is s, we
can hear the first 5 seconds of each track of s with

thread.run(every=5., {s.skip()})

output(s)

We could also easily use this to register a telnet command, but this done by
default with the playlist operator: you can always use the skip telnet command
(or id.skip if an identifier id was specified for the source) to skip the current
song. For instance, with the script

server.telnet()

s = playlist(id="music", "~/Music")

output(s)

running the telnet command music.skip will end the current track and go to the
next one. As another example, let us register skip as an http service: the script

def skipper(_)

s.skip()

http.response(data="The current song was skipped!")

end

harbor.http.register.simple(port=8000, "/skip", skipper)

output(s)

makes it so that whenever we connect to the url http://localhost:8000/skip
the function skipper is called and the current song on the source s is abruptly
ended: this is part of the interaction you would typically have when designing
a web interface for your radio. Interaction through telnet and harbor http is
handled in section 6.8, so that we do not further detail this example here.

Seeking tracks. Every source has a method seek which takes as argument
a number of second and goes forward this number of seconds. It returns the
number of seconds effectively seeked: it might happen that the source cannot be
seeked (if it is a live stream for instance), in which case the function will always
return 0, or we might not be able to seek the given amount of time if we are near

114 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

an end of track. For instance, the following script will seek forward 5 seconds
every 3 second:

s = playlist("~/Music")

thread.run(every=3., {ignore(s.seek(5.))})

output(s)

It is possible to give a negative argument to seek, in which case it will try to
seek backward in time.

End of tracks. The operator source.on_end can be used to call a function some
time before the end of each track. In addition to the delay parameter, which
specifies this amount of time, the operator takes the source whose tracks are to
be processed and a handler function, which is executed when a track is about to
end. This handler function takes as arguments, the amount of remaining time
and the metadata for the track. For instance, the following track will say the
title of each song 10 seconds before it ends:

s = playlist("~/Music")

q = request.queue()

def speaker(t, m)

title = m["title"]

q.push.uri("say:Last song was #{title}")

end

s = source.on_end(delay=10., s, speaker)

s = add([q, s])

output(s)

You should now recognize a usual programming pattern. The main source is s,
which is added to a queue q. We use source.on_end to register the handler
function speaker, which inserts into the queue a request to say the title.

The operator source.on_end is also used behind the curtains to implement
fade.out.

6.4 Transitions

So far, we have seen that we can easily play several music files sequentially
(for instance with the playlist operator) or switch between two sources (using
the fallback or switch operators). However, the resulting transitions between
two tracks are quite abrupt: one track ends and the other starts. We often want
crossfading transitions between tracks, which means that the volume of the first
track should be progressively lowered and the one of the second progressively
increased, in such a way that we hear the two during the transition:

6.4. TRANSITIONS 115

1

0

volume

time

track n track n+1

Note that, as figured in the graph above, we don’t necessarily want the duration
of the transition to be the same for all tracks: for instance, the transition should
be shorter (or there should even be no transition) for tracks starting or ending
abruptly.

Liquidsoap supports both

• transitions between two distinct sources (for instance, when changing the
source selected by a switch), and

• transitions between consecutive tracks of the same source.

The latter are more tricky to handle, since they involve a fast-forward compu-
tation of the end of a track before feeding it to the transition function: such a
thing is only possible when only one operator is using the source, otherwise we
will run into synchronization issues.

Cue points. Before discussing transitions, we should first ensure that our tracks
begin and end at the right time: some songs features long introductions or long
endings, that we would like not to play on a radio (think of a Pink Floyd song).
In order to do so, we would rather avoid directly editing the music files, and
simply add metadata indicating the time at which we should begin and stop
playing the files: these are commonly referred to as the cue in and the cue out
points.

The cue_cut operator takes a source and cuts each track according to the cue
points which are stored in the metadata. By default, the metadata liq_cue_in

and liq_cue_out are used for cue in and cue out points (the name of the metadata
can be changed with the cue_in_metadata and cue_out_metadata parameters of
cue_cut), and are supposed to be specified in seconds relative to the beginning
of the track. Negative cue points are ignored and if the cue out point is earlier
than the cue in point then only the cue in point is kept.

For instance, in the following example, we use the prefix argument of playlist
to set liq_cue_in to 3 and liq_cue_out to 9.5 for every track of the playlist:

s = playlist(prefix="annotate:liq_cue_in=3,liq_cue_out=9.5:",

"~/Music")↪→

s = cue_cut(s)

output(s)

We will thus play every song of the playlist for 6.5 seconds, starting at second 3.
In practice, the metadata for cue points would either be hardcoded in the files

116 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

or added for each file with annotate in the playlist. In a more elaborate setup,
a request.dynamic setup would typically also use annotate in order to indicate
the cue points, which would be fetched by your own scheduling back-end (for
instance, the cue points could be stored in a database containing all the songs).

Fading. In order to have smoother transitions, a first way to proceed is to
progressively increase the volume from 0 (the minimum) to 1 (the maximum) at
the beginning of tracks and progressively decrease the volume from 1 to 0 at
the end of tracks: these operations are respectively called fading in and fading

out and their effect on the volume can be pictured as follows:

time

volume

0

1

fade in
time

volume

0

1

fade out

The operators fade.in and fade.out respectively fade in and out every track of
the source given as argument. The duration parameter controls the duration
in seconds of the fade: this corresponds to the length of the ramp on the above
figures, by default it takes 3 seconds to entirely change the volume. The duration
can also be changed by using setting the metadata liq_fade_in (the name can
be changed by with the override_duration parameter of the functions). Finally,
the parameter type controls the shape of the fade: it can respectively be "lin",
"sin", "log" and "exp" which will respectively change the shape of the fade as
follows:

t

vol

0

1

linear fade
t

vol

0

1

sine fade
t

vol

0

1

logarithmic fade
t

vol

0

1

exponential fade

The default shape is linear (it is the simplest), but the sine fade tends to be the
smoother for the ear. For instance, the script

s = fade.in(duration=4., type="sin", s)

s = fade.out(s)

will add a sinusoidal fade in of 4 seconds and a linear fade out of 3 seconds to
every track of the source s.

Transitions between successive tracks. In order to have nice transitions
between successive tracks of a source, the simplest way is to use the crossfade

6.4. TRANSITIONS 117

operator which takes a source and performs fading: it fades out the current
track, fades in the next track and superposes the two. In order to crossfade the
tracks of a source s you can simply write

s = crossfade(s)

et voilà!

The fade_out, fade_in and duration parameters of crossfade control the length
in seconds of the fade out, fade in and the total duration of the transition as
figured below:

1

0

volume

time

track n track n+1

fade out
fade in

fade

In this example, we have a fade out time of 2 seconds, a fade in time of 3 seconds
and a fade duration of 4 seconds, which corresponds to the following script:

s = crossfade(fade_out=2., fade_in=3., duration=4., s)

The default values are 3 seconds for fade in and out and 5 seconds for fade:

1

0

volume

time

track n track n+1

The total duration should always be strictly longer than the one of the fades,
otherwise the fades will not be complete and you will hear abrupt changes in
the volume. For instance, with a fade in and out of 3 seconds and a fade duration
of 2 seconds

s = crossfade(fade_out=3., fade_in=3., duration=2., s)

we will have the following incomplete transitions:

118 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

1

0

volume

time

track n track n+1

fade

The fade duration can be changed by setting the liq_cross_duration metadata
(and the name of the metadata can be changed in the override_duration param-
eter).

Smart crossfading. The crossfade operator has a “secret” option called smart

to produce more relevant transitions. When you set this parameter to true,
Liquidsoap inspects the relative loudness of the ending track and the starting
track and applies a different transition depending on their values. The general
idea is that we want to fade music which is soft (i.e. not very loud) and apply no
fading to more brutal (i.e. loud) music. In details the transitions are as follows:

• if both tracks are not very loud (both are below the value specified by the
medium parameter) and the loudness are comparable (their difference is
below the value specified by the margin parameter), we apply a regular
transition:

1

0

volume

time

track n track n+1

• if both tracks are very loud (both are above the value specified by the high
parameter), we apply no transition:

1

0

volume

time

track n track n+1

• if the first track is not loud and the second one is, we only fade the first

1

0

volume

time

track n track n+1

6.4. TRANSITIONS 119

and dually if the first one is loud and the second one is not.

Under the hood: the cross operator. In the case you want to customize transi-
tions between tracks, you should use the cross operator which allows the fully
specify which transition we should apply. In fact, the crossfade operator is itself
programmed in the standard library using the cross operator. This operator
takes as argument duration the duration of the fade (whose default value is
5 seconds), a function specifying the transition, and the source whose tracks
should be crossfaded. The type of the transition function is

({metadata : [string * string], db_level : float, source : source},

{metadata : [string * string], db_level : float, source : source})

-> source

It takes two arguments, respectively corresponding to the end of the old track
and the beginning of the new track, which consist in records providing, for both
of them,

• the metadata,
• the loudness in dB,
• the source corresponding to the track,

and returns a source corresponding to the crossfading of the two tracks. For
instance, the usual fading can be achieved with

def f(a, b)

add(normalize=false, [fade.out(a.source), fade.in(b.source)])

end

s = cross(f, s)

The transition function f simply adds the source of the ending track, which
is faded out, together with the source of the beginning track, which is faded
in. It is important that we set here the normalize argument of the add to false:
otherwise the overall volume will be divided by two (because there are two
sources) and we will hear a volume jump once the transition is over.

Let us give some other examples of transition functions. If we want to have no
transition, we can use the sequence operator to play the end of the old source
and then the beginning of the new source:

def f(a, b)

sequence([a.source, b.source])

end

We could take this opportunity to insert a jingle in between the tracks:

def f(a, b)

sequence([a.source, (once(jingle):source), b.source])

end

120 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

where we suppose that jingle is a playlist of jingles (the notation (x:source)

above means that we impose that x should have the type source,i.e. a source
without methods; this is unfortunately necessary above for now, because Liq-
uidsoap otherwise thinks that the function f operates on sources with methods
and is not accepted as a valid argument for the cross function). Or we could
to all the three at once. Namely, suppose that we have a jingle and we want to
achieve the following:

• we begin by fading out a for 3 seconds,
• after 1 second, we start playing the jingle (say that it lasts for 3 seconds),
• after 2 seconds, we start playing b which is faded in.

Graphically, this would look like the following:

volume

1

0 time

jingletrack n track n+1

fade

This can be achieved by the following function which is basically adding the old
source faded out, the jingle and the new source faded in:

def f(a, b)

add(normalize=false, [

fade.out(a.source),

sequence([blank(duration=1.), once(jingle)]),

sequence([blank(duration=2.), fade.in(b.source)]),

])

end

The operators sequence are used here to add some blank at the beginning of the
source in order to delay the moment where they are started. The “real” duration
of the fade is 5 seconds, but we set the duration parameter to 6 to have 1 extra
second for safety. In order to illustrate the use of the metadata fields, suppose
that we want to have no transition, but want to insert a jingle when the metadata
jingle of the new track is set to true. This can be achieved with:

def f(a, b)

if b.metadata["jingle"] == "true" then

sequence([a.source, (once(jingle):source), b.source])

else

sequence([a.source, b.source])

end

end

6.4. TRANSITIONS 121

Here, we make use of the field metadata of b which contains the metadata for
the starting track.

Finally, in the case where the current track ends unexpectedly, wemight not have
enough time to perform the transition. For instance, when we skip the current
track of a source, we immediately go to the next track. The minimum parameter
of cross controls how much time in advance we should have to perform the
transition: if the remaining time of the current track is below this value, we
simply don’t apply any transition.

Transitions between different sources. The operators which allow switch-
ing between different sources (switch, fallback, rotate and random) also allow
specifying the transitions to be applied when switching from one source to the
other. A transition is described by a function taking two sources as arguments
and returning a new source: the first argument is the source which is about
to be left, the second argument is the newly selected source, and the returned
source is the result of their combination. This is similar to the transitions for
cross, excepting that we don’t have the power and metadata in this case. The
default transition is the function

fun (a, b) -> b

which simply discards the stream from the old source and returns the one of the
new one. In practice, the first argument is often irrelevant because Liquidsoap
cannot predict accurately when the next switch will occur.

The switching operators all take an argument transition_lengthwhich controls
the length of the transition in seconds, i.e. how long the two sources a and b

will overlap, the result of the overlap being computed by the transition function.
This transition duration can be overridden by passing the metadata named
liq_transition_length (the name of this metadata can be changed with the
override parameter). The operators also take a list transitions: the nth element
of this list is the transition function that will be used when switching to the nth
source.

In order to illustrate this, suppose that we have two sources: live which is
a live source available from time to time (for instance, a dj connecting to an
input.harbor source) and music which is a local music source (for instance, a
playlist). In such a situation, we would define with a fallback which plays the
live source if available and defaults to the music source otherwise:

radio = fallback(track_sensitive=false, [live, music])

We want to enhance our setup and have transitions such that

• when we switch to the live source, we want to hear “And now the live
show!” while the sound of the live source progressively fades in,

122 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

• when we switch back to the music source, we want to hear a jingle and
then the music source.

This will be achieved by implementing two dedicated transition functions:

• the first one, to_live(a, b), will add a request to say the text once with
the source b (which contains the beginning of the live show),

• the second one, to_music(a, b), uses the operator sequence to play a jingle
and then the source b.

Their code is given below:

def to_live(a, b)

add(normalize=false, [

once(single("say:And now the live show!")),

fade.in(duration=4., type="sin", b)

])

end

def to_music(a, b)

sequence([(single("jingle.mp3"):source), b])

end

radio = fallback(track_sensitive=false, transition_length=5.,

transitions=[to_live, to_music], [live, music])

We finally use the fallback operator to play the live source if available and the
music source otherwise. We set the list transitions of transitions to to_live

and to_music, which are respectively used when switching to the live and music

sources.

Smooth add. We have seen earlier that we could insert a jingle every 30 minutes
in a stream with by adding to the main music source a track of jingle as follows:

jingles = delay(1800., playlist("jingles"))

music = playlist("~/Music")

radio = add([jingles, music])

output(radio)

If we want to fade the jingle instead of adding it abruptly when available, we
could use the above functions to program our fades. But fortunately, this is
already programmed for us in the standard library, with the smooth_add function.
It takes as argument a special source which is available from time to time (the
jingles in our case), a normal source which is usually available (the music source
in our case) and, whenever a track of special is available adds it on top of normal
with a faded transition. The argument duration controls the duration of the
transition (1 second by default) and the parameter p controls the proportion
of the normal source in the mix (0.2 by default with means 20% normal source
and 80% special source). In the above script, we could use it by replacing the
penultimate line by

6.5. SIGNAL PROCESSING 123

radio = smooth_add(duration=0.5, special=jingles, normal=music)

6.5 Signal processing

Now that we have seen the ways of generating sound, we should see ways to
shape the sound.

Amplification. The first basic sound effect is amplification, i.e. raising or lower-
ing the volume of a source. This is basically achieved with the amplify operator
which takes a float coefficient and a source, and amplifies the sources by the
coefficient. For instance, we can halve the loudness of a source s by

s = amplify(0.5, s)

As for most parameters of audio effects, amplify also accepts getters as coeffi-
cients, which allow modifying the value dynamically. For instance, we could
use an interactive variable for the amplification parameter:

a = interactive.float("main_volume", 1.)

s = amplify(a, s)

this would allow changing the value of the amplification on the telnet using the
command

set main_volume 1.2

We could also fetch the value of the volume from the contents of the volume file
as follows:

a = file.getter.float("volume")

s = amplify(a, s)

The file.getter.float regularly looks at the contents of the file volume and
returns an updated value. Such mechanisms could be handy to provide the user
with a way to adjust his volume for a live show using a graphical interface.

The amplify parameter also support setting the amplification coefficient using
metadata: if the metadata liq_amplify is specified then its value will be taken
as coefficient for current track (the name of the metadata itself can be changed
with the override parameter amplify). This value can either be specified as a
float coefficient (such as 0.7) or in decibels (such as -3.10 dB).

ReplayGain. In particular, amplify is quite useful if you want to have all your
audio files playing at the same loudness, without having to re-encode them:
we can simply amplify each track differently based on a metadata in order to
have more homogeneous loudness. There is a standard way of computing the
required amplification factor, called ReplayGain, which takes in account the
human perception of the sound in order to suggest a volume correction, thus

124 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

ensuring a comfortable, consistent listening experience. Many tools are available
to precompute this value and store it as a metadata in the file, for instance

loudgain -s i file.mp3

will add the replaygain_track_gain metadata to file.mp3 and set it to a value
such as -1.69 dB indicating that we should lower the volume by 1.69 decibels
(which amounts to performing an amplification by 0.82) in order to reach a
standard volume. If we assume that our files are tagged in this (standard) way,
we can use the amplify operator to apply the gain correction as follows:

s = playlist("~/Music")

s = amplify(override="replaygain_track_gain", 1., s)

For convenience, the amplification by this metadata is defined in the standard
library as the replaygain operator, so that we can even simply write

s = replaygain(playlist("~/Music"))

If not all your files are tagged with ReplayGain metadata you can use the com-
mand

enable_replaygain_metadata()

to instruct Liquidsoap to compute it for every played file: for each file, it will
run a script (called extract-replaygain) which will try to look if the ReplayGain
metadata is present, and if not will compute it (using ffmpeg). If you want
instead to perform it on a per-file basis, you can use the protocol replaygain:
which instructs to compute the ReplayGain of a file, with the same method. For
instance,

s = replaygain(single("replaygain:test.mp3"))

will play the file test.mp3, computing its ReplayGain beforehand, and correcting
its volume. Incidentally, we recall that the prefix parameter of playlists can be
used add this protocol to all the files in the playlist:

s = replaygain(playlist(prefix="replaygain:", "~/Music"))

The operation of computing the ReplayGain for a given file is a bit costly so that
we strongly advice to perform it once for all for your music files instead of using
the above mechanisms.

Normalization. The above ReplayGain allows performing volume normalization

when playing music files: we want the loudness to be more or less constant dur-
ing the stream. For files this is “easy” because we can compute this information
in advance, however for live streams we have to proceed differently since we
do not have access to the whole stream beforehand. For such situations, the
normalize operator can be used: it continuously computes the loudness of a
stream and adjusts the volume in order to reach a target loudness: this operation

6.5. SIGNAL PROCESSING 125

is sometimes called automatic gain control. Basically, the sound of a source s can
be normalized with

s = normalize(s)

Of course, the normalize operator takes quite a number of optional parameters
in order to control the way the normalization is performed:

• target is the loudness we are trying to achieve for the stream (-13 dB by
default).

• up and down respectively control the time it takes to increase the volume
when the stream is not loud enough and the time it takes to decrease the
volume when it is too loud (the higher, the more times it takes). Default
values are respectively 10. and 0.1: we want to quickly lower the volume
because a sound too loud is irritating (or worse, can damage the user’s
ear), but we increase it more slowly in order not to be too sensitive to
local variations of the loudness.

• gain_min and gain_max is the minimum and maximum gain we can apply
(respectively -12 dB and 12 dB by default, which correspond to an amplifi-
cation by 0.25 and 4): the second is particularly useful so that we do not
amplify like crazy when the stream is almost silent.

• threshold controls the level below which we consider that we have silence
and do not try to increase the volume anymore.

• window is the duration of the past stream we take in account as the current
volume: default value is 0.5 seconds. Increasing this will make the operator
less sensitive to local variations of the sound, but also less reactive.

• lookahead specifies how many seconds of sound we look at in advance
(beware that this will introduce that amount of delay in the output stream).

For instance, in the script

s = playlist("~/Music")

s = normalize(window=4., down=.5, lookahead=2., debug=.5, s)

we use normalize with a window of 4 seconds, which is quite long in order not
to be too sensitive to local variations of sound, and a time of 0.5 seconds to lower
the volume. This results in quite a smooth volume variation, but which tends
to be late: because of the window, we only realize that the sound has gone up
quite some time after it has actually gone up. In order to compensate this, we
use a lookahead of 2 seconds, which makes the normalization base its decisions
on audio 2 seconds in the future. In this way, when the loudness suddenly goes
up, the normalize operator will “guess” it in advance and begin lowering the
volume before the peak occurs.

Tweaking the parameters can take quite some time. In order, to ease this, the
debug parameter, when set, will print internal parameters of the normalization
(the current loudness, the target loudness, the current gain, and the gain required
to reach target loudness) at the specified interval in the logs. The messages are

126 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

printed as debug message, so that you should ensure that you set the log level
high enough to see them:

log.level := 5

s = normalize(debug=.5, s)

If you need more custom logging the source exports methods to retrieve the
current loudness (rms), volume (gain) and volume required to reach the target
loudness (target_gain); those are given in linear scale and can be converted to
decibels with dB_of_lin. For instance, the script

s = normalize(s)

s = source.run(s, every=1., {print("r: #{s.rms()} g: #{s.gain()}")})

prints the loudness and volume every second.

Finally, if you need more customization over the operator, you can have a look
at its code and modify it. It is written in Liquidsoap, in the sound.liq file of the
standard library.

Handling silence. Another basic signal-processing feature that everyonewants
to have is blank detection. We want at all cost to avoid silence being streamed
on our radio, because listeners generally don’t like it and will go away.

Skipping blank. Itt might happen that some music file is badly encoded and
features a long period of blank at the end. In this case we want to skip the end
of the song, and this is precisely the role of the blank.skip function:

s = blank.skip(max_blank=2., s)

The parameter max_blank specifies how long we want to take before skipping
blank, 2 seconds in our example. Other interesting parameters are threshold,
the loudness in dB below which we consider sound as silence, and min_noise, the
minimum duration of non-silence required to consider the sound as non-silent
(increasing this value allows considering as blank, silence with some intermittent
short noises).

Stripping blank. It might also happen that the dj has turned his microphone off
but forgotten to disconnect, in which case we want to get back to the default
radio stream. To handle such situations, we cannot use blank.skip because we
cannot skip a live stream, but we can resort to the blank.strip operator which
makes a source unavailable when it is steaming blank, and is typically used in
conjunction with fallback:

mic = buffer(input.alsa())

mic = blank.strip(max_blank=2., min_noise=.1, threshold=-20., mic)

music = playlist("~/Music")

radio = fallback(track_sensitive=false, [mic, music])

6.5. SIGNAL PROCESSING 127

The max_blank parameter states that we wait for 1 second of silence before
making the source unavailable and the threshold parameter means that we
consider anything below -20 dB as silence. The min_noise parameter means that
we require that there is 0.1 s of noise before making the source available again,
so that we still consider as silent a microphone where there is no sound most
of the time, excepting very short noises from time to time (such as a person
walking around).

Gating. Sometimes we do want to stream silence, and when we do so, we want to
stream real silence. When you have an input such as a microphone, it generally
induces a small noise, which is almost unnoticeable when someone is talking,
but quite annoying when we hear only that. In order to address this, the gate

operator can be used to lower the volume when a source is almost silent. For
instance,

mic = buffer(input.pulseaudio())

mic = gate(threshold=-30., range=-80., mic)

The useful parameters of gate are

• threshold: the level (in dB) from which we consider that sound is not
silence anymore,

• range: by how much (in dB) we should lower the volume on “silence”,
• attack and release: the time (in ms) it takes to increase or decrease the
volume,

• hold: how much time (in ms) to wait before starting to lower the volume
when we did not hear loud sounds.

The following pictures both the amplitude of the sound (the squiggling curve)
and the answer of the gate (the thick curve):

time

amplitude

threshold

hold release attack

range

The internal state of the operator can be observed by the exported method gate

which provides a value between 0 and 1 indicating whether the gate is “closed”
or “open”, i.e. if the volume is currently lowered or not.

Sound shaping. Now that we have presented the basic effects, which mainly
operate on the volume of the sound, we will now be presenting some more
advanced audio effects, which can be used to make the listening experience
more homogeneous and give a “unique color” to your radio. We however need

128 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

to begin by explaining one of the classical issues we have to face when operating
on sound: clipping.

Clipping. We have indicated that all the audio samples should have a value
between -1 and 1 in Liquidsoap. However, if we increase too much the volume
of a source be it manually with amplify or in an automated way with normalize,
it might happen that we obtain samples above 1 or below -1:

time

amplitude

This is not a problem per se: Liquidsoap is perfectly able to handle such values
for the samples. However, when we send such a signal to an output, it will be
clipped: all the values above 1 will be changed to 1 and all the values below -1
will be changed to -1, in order to conform to the standard range for samples.
Our signal will then look like this

time

amplitude

As you can see, this operation is not particularly subtle and, as a matter of fact
it has quite a bad effect on sound. If you want to test it you can try the script

s = sine(440.)

s = amplify(s.time, s)

output(s)

It plays a sine, whose amplitude is given by the internal time of the source
(s.time() is the number of seconds we have played of source s). On the first
second, the amplitude will raise from 0 to 1 so that we will hear no distortion.
After second 1, the amplification coefficient will be greater than 1, so that clipping
will occur, and it occurs more and more as time goes by. You should hear that our
sine quickly does not sound like a sine anymore: we can hear high harmonics
and the sound gets closer to the one of a square wave (try the square operator if
you have never heard one). We will see next section operators which are useful
to mitigate those effects.

In passing, if you insist of performing clipping in Liquidsoap (i.e. restricting
samples between -1 and 1 as described above) you can use the clip operator.

6.5. SIGNAL PROCESSING 129

Compressing and limiting. In order be able to increase the loudness of the signal
without the sound artifacts due to clipping, people typically use compressors

which are audio effects, which leave the signal untouched when it is not very
loud, and progressively lowers when it gets loud. Graphically, the output level
given the input level is represented in the following figure:

threshold
input level (dB)

output level (dB)

2:1
5:1

We can observe that below the threshold the output is the same as the input (the
curve on the bottom left is a diagonal), and that above the threshold, the output
increases more slowly than the input, following a ratio which can be configured
(we have pictured ratios 2:1 and 5:1 to illustrate this). This operator is imple-
mented in Liquidsoap as the compress operator. For instance, the compression
of a source s above -10 dB at a ratio of 5:1 can be achieved with

s = compress(threshold=-10., ratio=5., s)

This operator has a number of useful parameters:

• the threshold (in dB) above which we should start compressing,

• the ratio of compression (in input dB per output dB, as illustrated above),

• the amplification by pre_gain and gain of the signal, respectively before
and after compressing,

• the attack and realease time (in ms), which are the time it takes to re-
spectively lower and increase the volume (those operations are generally
not performed instantly in order to smoothen the variations and make
them more natural),

• the knee (in dB) controls the width of the smoothing around the threshold:

130 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

threshold

input level

output level

knee

• the window (in ms) used to smoothen the computation of the input level,

• the lookahead (in ms), i.e. how much time we look at the signal in the
future (this is similar to what we already saw for normalize).

Finally, the wet parameter gives the original signal when set to 0 and the com-
pressed signal when set to 1, and can be useful when configuring compressors,
in order to evaluate the effect of a compressor on a signal.

A typical compressor, will have a ratio from 2 to 5: it will smoothly attenuate
high loudness signals, which allows boosting its loudness while avoiding the
clipping effect. Compressors with higher ratios such as 20 are called limiters:
they are here to ensure that the signal will not get out of bounds. The standard
library defines limit, which is basically a compressor with a ratio of 20, and
can be thought of as a better version of clip with much less sound distortion
induced on the sound. For instance, if we get back to the example we used to
illustrate the effects of clipping, you can hear that the stream sound much more
like a sine if we limit it, even when the amplification is higher than 1:

s = sine(440.)

s = amplify(s.time, s)

s = limit(s)

output(s)

Since the normalize function is not perfect, it might happen that it produces
a very loud sound for a short period of time. In order to avoid the clipping it
would induce, it is advisable to always pipe the output of normalize to a limiter:

s = limit(normalize(s))

Filters. The last basic effect we are going to introduce are filters, which only
keep some frequencies of the input signal. There are three main types:

• low-pass filters only keep low frequencies (below a given cutoff fre-
quency),

• high-pass filters only keep high frequencies (above a given cutoff fre-
quency),

6.5. SIGNAL PROCESSING 131

• band-pass filters only keep frequencies between two boundaries.

Ideal filters would have a frequency response as indicated in the following
figures:

freq

amplitude cutoff

low-pass filter
freq

amplitude

band-pass filter
freq

amplitude cutoff

high-pass filter

For instance, a low-pass filter would keep all the frequencies below the cutoff
exactly as they were in the original signal, and keep none above. In practice,
the transition between kept and removed frequencies is smother and the actual
filter response of a low-pass filter is rather like this:

cutoff

frequency (Hz)
1 10 100 1000 10000

gain (dB)

0

-10

-20

(to be precise, this is the response of a first-order low pass filter, as implemented
in the filter.rc operator, with a cutoff frequency of 1000 Hz). Designing filters
is an art rather than a science, and this is not the place to explain it. We will
simply mention here that, in practice, using biquadratic filters is generally a
good idea, because they offer good balance between efficiency and precision.
Those are implemented as filter.iir.eq.* operators such as

• filter.iir.eq.low: a biquadratic low-pass filter,
• filter.iir.eq.high: a biquadratic high-pass filter,
• filter.iir.eq.low_high: a band-pass filter obtained by chaining a low-
and a high-pass biquadratic filter.

For comparison, the frequency response of filter.iir.eq.low with a cutoff
frequency of 1000 Hz is

132 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

cutoff

frequency (Hz)
1 10 100 1000 10000

gain (dB)

0

-10

-20

You can observe that it is much sharper than the first-order one, and thus closer
to the ideal filter. The functions filter.rc and filter are computationally
cheaper (in particular the former) but are of lower quality (in particular the
former): the change of amplitude around the cutoff frequency is less abrupt for
filter.rc than for biquadratic filters and filter does not handle well high cutoff
frequencies (higher than the quarter of the sampling rate, which often means
around 10 kHz). The filter.iir.butterworth.* filter are of good quality (and
their quality can be arbitrarily increased by increasing their order parameter),
but require more computations (and the higher the order is, the more cpu is
used).

A typical use of filters is (obviously) to remove unwanted frequencies. For
instance, cheap microphones, often produce noise at low frequencies, which can
be removed using a high-pass filter. This is why the standard library defines the
function

def mic_filter(s)

filter(freq=200.,q=1.,mode="high",s)

end

which can be used to perform such a cleaning of the sound by removing fre-
quencies below 200 Hz.

Another typical use of filters is to increase the frequencies we like. For instance,
increasing bass frequencies makes the sound warmer and thus more pleasant
to listen for background music. If we want to do so, we can extract the low
frequencies (say, below 200 Hz) from a source s using a low-pass filter, amplify
them (say, by 6 dB) and add them back to the original sound:

b = amplify(lin_of_dB(6.), filter.iir.eq.low(frequency=200., s))

s = add([s, b])

However, if we do things in this way, the risk is high that we are going to clip
and thus hear saturation from the basses. As explained above, a much more
pleasant solution consists in using a limiter after increasing the volume. In this
way, we can handle a 8 dB increase of the frequencies below 200 Hz without any
problem:

b = limit(pre_gain=8., filter.iir.eq.low(frequency=200., s))

s = add([s, b])

6.5. SIGNAL PROCESSING 133

This is implemented in the standard library as the bass_boost operator, so that
the above can be more concisely written

s = bass_boost(frequency=200., gain=8., s)

Multiband compression. We are now ready to introduce the effect that you were
all waiting for, which is in fact a combination of previous effects: multiband

compression aka the big fat FM radio sound. This is what is used in most
commercial music radios so that, when you listen to songs in your car without
thinking too much, you are not disturbed by changes in the dynamics of songs.
Whether you like it or not, this can easily be done in Liquidsoap. This is basically
achieved by splitting the signal in various bands of frequencies (using band-pass
filters such as filter.iir.eq.low_high), independently compress each of those
(using compress), and add them back together (using add). In other words, we
apply the same principle as the above “bass booster” to all the spectrum.

For instance, the script

def compress(s)

compress(attack=100., release=200., threshold=-20., ratio=6.,

gain=7., s)

end

s = add(normalize=false, [

compress(filter.iir.eq.low (frequency=200., s)),

compress(filter.iir.eq.low_high(low=200., high=800., s)),

compress(filter.iir.eq.low_high(low=800., high=1500., s)),

compress(filter.iir.eq.low_high(low=1500., high=8000., s)),

compress(filter.iir.eq.high (frequency=8000., s))

])

defines a compress function by specifying values for some of the arguments
of the original one. It then splits the sound in 5 bands: below 200 Hz, 200 to
800 Hz, 800 to 1500 Hz, 1500 to 8000 Hz and above 8000 Hz. Finally, it applies
compression to each of these bands and adds back the bands.

For convenience, the function compress.multiband of the standard library already
implements this: it takes in account the specification of the bands, which consists
in its frequency (this is the higher frequency, the lower one is taken from the
previous band) as well as the threshold, ratio, attack and release time parameters
of the corresponding compressor. The script

s = compress.multiband(s, [

{frequency=200., attack=100., release=200.,

threshold=-10., ratio=4., gain=10.},

{frequency=800., attack=100., release=200.,

threshold=-10., ratio=4., gain=6.},

{frequency=1500., attack=100., release=200.,

134 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

threshold=-8., ratio=4., gain=6.},

{frequency=8000., attack=100., release=200.,

threshold=-6., ratio=4., gain=6.},

{frequency=40000., attack=100., release=200.,

threshold=-4., ratio=4., gain=6.}

])

is therefore roughly the same as the above one, excepting that we are varying
the parameters for fun. Of course getting the parameters right requires
quite some trial and error, and listening to the results. Below, we describe
compress.multiband.interactive which helps much by providing a simple
graphical interface in which we can have access to those parameters.

Other effects. We have presented the most useful effects above, but some others
are available in Liquidsoap. You are advised to have a look at the documentation
to discover them.

In particular, there are some effects on stereo stream such as left/right panning
(the pan operator) or modifying the width of the signal (the width operator,
which takes a float parameter such that -1 turns the original source into mono,
0 returns the original source and a value greater than 0 returns the source with
“widened” sound). There are some traditional effects used in music such as echo
or flanger. And finally, there are some effects which operate on the pitch of the
sound such as stretch which reads a source quicker than realtime thus resulting
in high-pitched sounds and the soundtouch operator which is able to perform
pitch-shifting and time-stretching.

LADSPA and LV2 plugins. In the case where you are not satisfied by the builtin
operators, Liquidsoap support LADSPA and LV2 plugins. Those are standards
for signal processing plugins, for use in any application. Many free plugin packs
are available, among which we recommend

• Calf Studio Gear1,
• Linux Studio Plugins2,
• Steve Harris’ plugins3,
• Tom’s plugins4.

Once installed on your system, those plugins will appear has operators named
ladspa.* or lv2.* (here * is replaced by the plugin name). You can use the
command

liquidsoap --list-functions

1https://calf-studio-gear.org/
2https://lsp-plug.in/
3https://github.com/swh/ladspa
4https://tomscii.sig7.se/tap-plugins/ladspa.html

https://calf-studio-gear.org/
https://lsp-plug.in/
https://github.com/swh/ladspa
https://tomscii.sig7.se/tap-plugins/ladspa.html

6.5. SIGNAL PROCESSING 135

to list all Liquidsoap operators and thus discover those which are present in your
installation. You can then use the -h option to read the help about a particular
plugin. For instance, if we type

liquidsoap -h ladspa.fastlookaheadlimiter

we obtain

Fast Lookahead limiter by Steve Harris.

Type: (?id : string, ?input_gain : {float}, ?limit : {float},

?release_time : {float}, source(audio=pcm(stereo), video='a,

midi='b)) -> source(audio=pcm(stereo), video='c, midi='d)

↪→

↪→

Category: Source / Sound Processing

Flag: extra

Parameters:

* id : string (default: "")

Force the value of the source ID.

* input_gain : {float} (default: 0.)

Input gain (dB) (-20 <= `input_gain` <= 20).

* limit : {float} (default: 0.)

Limit (dB) (-20 <= `limit` <= 0).

* release_time : {float} (default: 0.507499992847)

Release time (s) (0.01 <= `release_time` <= 2).

* (unlabeled) : source(audio=pcm(stereo), video='a, midi='b)

from which we understand that we have some sort of limiter, whose input gain,
threshold and release time can be configured, and can use it in a script as follows:

s = ladspa.fastlookaheadlimiter(limit=-3., s)

Plugins can be a bit difficult to understand if you have no idea what the plugin
does, in which case the documentation on the author’s websites can be useful.

Many other plugins are provided by the FFmpeg library. They are presented
later, in section 7.2, since they are a bit more difficult to use and you are most
likely to use them for video.

136 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

Stereo Tool. A last possibility to handle your sound is to use software dedicated
to producing high quality radio sound, such as Stereo Tool1, which is supported
through the stereotool function. This software is proprietary and you need a
license key to operate (a free version is available though, but it will introduce
regular beeps in the stream). Typically, one would use it to handle a source s

with Stereo Tool as follows:

s = stereotool(

library_file="/path/to/stereotool/shared/lib",

license_key="my_license_key",

preset="/path/to/preset/file",

s)

Above, you should replace the path to the Stereo Tool library, the license key
and the preset (usually, a file ending with the .sts extension) by actual values.
Beware, a current limitation is that the processed audio signal is slightly delayed
(roughly between 50 and 100ms), because the operator has an internal processing
buffer..

Playing with parameters. We would now like to make a few remarks about
the way parameters can be handled in order to configure sound effects. You will
certainly experience that you quickly face with loads of parameters and, when
you want to find the right values, it can be very tedious to change them in your
script, save the file, and relaunch the whole script in order to listen to the effect.

Decibels. Before dealing with parameters themselves, we remind you that there
are twoways tomeasure amplitude, either linearly or in decibels. The relationship
between the two is not simple: recall from section 2.4 that linear l and decibel d
measurements are related by the relations d=20 log10(l) and l=10d/20. What you
should remember is that

• 0 dB is an amplitude of 1,
• subtracting 6 dB amounts to dividing the amplitude by 2,
• adding 6 dB amounts to multiplying the amplitude by 2.

Graphically, the relationship between the linear amplitude and the gain in
decibels is pictured below in both ways:

1https://www.stereotool.com/

https://www.stereotool.com/

6.5. SIGNAL PROCESSING 137

-12
-6
0
6
12

1 2 4
½ amplitude

gain (dB)

2

4

-12 -6 0 6 12
gain (dB)

amplitude

In Liquidsoap, the functions lin_of_dB and dB_of_lin can be used to convert
between the two: the first converts decibels in linear units and the second does
the converse. For instance, we can amplify a source s by 4 dB with

s = amplify(lin_of_dB(4.), s)

When using operators, you should always check in the documentation the unit
for the amplitudes. Unfortunately, both exist in nature (for instance, amplify
takes a linear parameter whereas most effects such as compressors expect deci-
bels).

Getters. Most sound operators take getters as arguments, as already explained
in section 5.5. For instance, the type of amplify is (roughly)

({float}, source) -> source

The first argument, which corresponds to the amplification parameter, is of type
{float} which means that both

• a float, or
• a function of type () -> float

are accepted. This means that we can either directly provide a value as in

s = amplify(0.5, s)

or we can provide a function which returns a float each time it is called, which
can be different each time. For instance, in the script

t0 = time()

def a()

time() - t0

end

s = amplify(a, s)

we store in t0 the time (in seconds) at the startup of the program, define a as the
function which returns the difference between the current time and the startup
time (in seconds), and use it as amplification factor for the source s: this means

138 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

that after running the script for n seconds our source s will be amplified by n.
We also recall that this can be written more concisely as

t0 = time()

s = amplify({time() - t0}, s)

and, in fact, we could even directly use the function time.up which gives the
time since startup

s = amplify(time.up, s)

The fact that we can use getters as parameters is quite useful for retrieving
parameters from external sources. For instance, the function file.getter.float

has type

(string) -> () -> float

It takes as argument a file name (a string) and returns a function which, each
time it is called, returns the float which is contained in the file (and this is done
in an efficient way). This means that the following script

a = file.getter.float("volume")

s = amplify(a, s)

will amplify the source s by the value indicated in the file volume: as soon as
you change the value in this file, you will hear a corresponding change in the
volume.

Interactive variables: telnet. Instead of using files to store parameters as described
above, our preferred way of handling those is with interactive variables. These
can be thought of as references whose contents can be changed in various
ways. An interactive variable of type float can be created with the function
interactive.float (and similarly interactive strings and booleans can be created
by interactive.string and interactive.bool). This function takes as argument
the name of the interactive variable, which we will use to modify it, as well as
the initial value. For instance, we can amplify a source s by an interactive float
named main_volume by

a = interactive.float("main_volume", 1.)

s = amplify(a, s)

A first way to modify such variables is through the telnet server. It can be started
by adding

server.telnet()

add the beginning of the script. We can then connect to the telnet server by
typing

telnet localhost 1234

6.5. SIGNAL PROCESSING 139

Here, we suppose that we are on the machine running the script, otherwise
localhost has to be replaced by its address. 1234 is the default port for the telnet
server. Then, we can change the value of the interactive variable main_volume to
0.75 by typing

var.set main_volume = 0.75

to which the server will answer

Variable main_volume set.

END

We can also retrieve the value of the variable by typing

var.get main_volume

which will prompt the answer

0.75

END

The telnet command can also read commands to send from its standard input,
allowing to automate the process of setting variables in scripts. For instance, we
can type

echo "var.set main_volume = 0.5" | telnet localhost 1234

to set main_volume in one go.

Interactive variables: persistency. One issue with interactive variables is that
they are not persistent: if we stop the script and run it again, their values are lost
and we get the default values again. However, this is easily solved by using the
interactive.persistent function, which takes a filename and stores the values
of all interactive variables in this file (in json format, which should easily be
readable). For instance, if you end the previous script with

interactive.persistent("script.params")

you will observe that a file script.params has been created and its contents is

[{ "main_volume": 0.5 }, [], [], []]

which, without entering the details, contains the value for main_volume. More-
over, it will automatically be read on next run of the script, so that interactive
variables will keep their values across executions.

There is one important caveat: the function interactive.persistent must be
called after all interactive values have been created (i.e. after all calls to functions
interactive.float and similar), otherwise previous values are not taken in
account when restarting scripts. If you do not want to think too much, follow
this simple rule: put any call to interactive.persistent toward the end of the
script!

140 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

Interactive variables: web interface. All this is very nice, but having to go through
a telnet interface to change values is not very user-friendly. Fortunately, we can
also get a web interface for free, simply by typing

interactive.harbor()

This will run a web server, which is accessible at the url

http://localhost:8000/interactive

which can be configured by setting parameters of the function, and allows
modifying the values of the variables. If you connect to it, you will see a webpage
like

where we can edit in realtime the value of the interactive variable (of course if we
had many variables we would have one line for each of them). If we specify the
minimal and maximal value of the interactive variable (min and max parameters
of interactive.float) we moreover get a slider, and if we moreover set the
description it will be displayed. This means that by changing the declaration
of the interactive variable to

a = interactive.float("main_volume", description="Our volume",

min=0., max=3., 1.)

the webpage will change to

In this way you easily get access to a convenient interface for setting
your parameters, and their values can be stored on the long run by using
interactive.persistent as explained above.

In order to provide another illustration, suppose that we want to setup a bass
booster for our radio source s. The way we are going to design it is by setting
up two interactive variables f and g for the frequency and the gain

interactive.harbor()

f = interactive.float("f", description="Frequency", min=0., max=1000.,

unit="Hz", 200.)

g = interactive.float("g", description="Gain", min=0., max=20.,

unit="dB", 8.)

b = bass_boost(frequency=f, gain=g, s)

s = add([s, b])

6.5. SIGNAL PROCESSING 141

output(s)

interactive.persistent("bb.params")

and tweaking them using the interactive variables webpage which looks like

Once the right values found, they will be stored in the bb.params files, but you
could then hardcode them in your script for more resiliency.

As a last example, suppose that we want to set up a multiband compressor. Well,
we could do the same as above for the parameters of compress.multiband, but it
becomes quite tedious to create interactive variables for all the parameters of
the function, for each band. Fortunately, the compress.multiband.interactive

operator can do this for us: we provide it with the number of bands we want to
have and it creates a compress.multiband instance as well as all the interactive
variables for us. For instance, given a source s, the script

interactive.harbor()

s = compress.multiband.interactive(bands=3, s)

output(s)

interactive.persistent("comp.params")

will give rise to the following interface

which allows to easily set up the multiband compressor using our ears and our
mouse. The wet parameter allows to compare the output with and without
compression, as explained below.

142 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

Interactive variables: OSC. Another way to modify interactive variables is
through the osc (Open Sound Control) protocol, which is used to communicate
values over a local network. There is plenty of software for your tablet or your
phone, which emulate controllers with loads of sliders and send their values
using this protocol. Each of the sliders has an osc address, which looks like
“/the/address”, whose name depend on the software you use. When launching
your software, you should first enter the ip address of the machine you want
to communicate with (in our case, the machine where Liquidsoap is running)
and the port on which we want to communicate (Liquidsoap uses 7777 by
default, this can be changed by modifying the osc.port configuration). The
function interactive.float takes an osc parameter which can be used to
specify an osc controller to listen to: when set, the variable will change when
the corresponding controller updates its value. For instance, the script

settings.osc.port := 9000

a = interactive.float(osc="/volume", "main_volume", 1.)

s = amplify(a, s)

output(s)

listens on the port 9000 for osc events and changes the value of the interactive
variable a when a new float value is sent at the osc address “/volume”.

In passing, Liquidsoap also offers some more low-level functions in order to
manipulate osc values:

• osc.float takes an osc address and an initial value as argument, and
returns a getter whose value changes when a new value is signaled by
osc:

v = osc.float("/volume", 1.)

s = amplify(v, s)

• osc.on_float allows registering a function which is called when a new
value is received through osc:

v = ref(1.)

osc.on_float("/volume", fun (x) -> v := x)

s = amplify(v, s)

• osc.send_float allows sending values through osc:

s = amplify(v, s)

def send_volume()

osc.send_float(host="1.2.3.4", port=7777, "/volume", v())

end

thread.run(every=1., send_volume)

Of course, similar functions exist for other types (osc.on_int, osc.send_bool,
etc.)

6.6. OUTPUTS 143

Comparing dry and wet. In order to test the pertinence of an effect, it is often
useful to compare the sound without and with the effect. The dry_wet operator
can help with this: it takes a float parameter, a source with the original sound
(the dry source) and a source with the modified sound (the wet source). When
the parameter varies between 0 and 1, the output varies between the dry and
the wet source: with 0 only the dry source is played, with 1 only the wet source
is played. For instance, if we want to test a compressor on a source s, we could
have a setup such as

s2 = compress(threshold=-10., ratio=5., gain=4., s)

w = interactive.float("wetness", min=0., max=1., 1.)

s = dry_wet(w, s, s2)

output(s)

Here, s is the original source and s2 is the source with the compressor effect
applied. By varying the interactive variable wet, we can hear how compression
affects the source.

6.6 Outputs

Now that we have the sound we were dreaming of for our radio, we are ready
to export it to the world. We present here the various ways our stream can be
distributed, as well as the various ways it can be encoded.

Soundcard output. The first basic output is the soundcard. As we have already
seen many times, the output operator should select for us a decent sound-
card output. You can also use various output operators, depending on the
library you want to use to communicate with the soundcard output.pulseaudio,
output.alsa, output.portaudio and output.ao. The first two are generally a
good choice.

Dummy output. Liquidsoap also features an output called output.dummywhich
allows streaming to. . . nowhere! It can still be useful to animate source: without
an output a source does not produce a stream. As an illustration, suppose that we
want to log the metadata (say, the title and artist) of a stream without listening
to it. This could be performed as follows:

s = mksafe(input.http("http://my/favorite/radio"))

def log_song(m)

file.write(append=true, data=metadata.json.stringify(m),

"/tmp/songs")↪→

end

s.on_track(log_song)

output.dummy(s)

144 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

The source s is here a distant stream fetched by input.http. Whenever we see
a new track on s, we log the metadata in some file. The important part here is
the last line: the use of output.dummy will make the source regularly produce a
stream (as if it was connected to a soundcard output for instance) and we will
thus be able to inspect tracks. If there is no output it is connected to, no one will
ever ask s for data, and we would never see a track.

In fact, a script without any output will never do anything sensible with respect
to streams, and for this reason Liquidsoap will simply refuse to start when there
is no output, displaying the message

No output defined, nothing to do.

Icecast. Icecast is a server on which Liquidsoap can send a stream, which will
take care of redistributing to the world. In order to use this method, you first
need to setup such a server, which will not be detailed here: you can refer to
section 4.2 or the official documentation1 for this. We simply suppose here that
we have setup a sever on the local machine (its address will be localhost) with
the default password hackme (that you should really change if you do not want
to run into problems).

Streaming our radio to the world is then as simple as this:

output.icecast(%mp3, host="localhost", port=8000,

password="hackme", mount="my-radio.mp3", radio)

The output.icecast operator takes as first argument the encoding format: %mp3
means that we want to encode our stream in mp3. The encoding formats are
detailed in section 6.7, for instance %mp3.abr(bitrate=160) would specify en-
coding in mp3 with average bitrate of 160 kbps, or %fdkaac(bitrate=64) would
specify encoding in aac format with bitrate of 64 kbps. Other arguments of
output.icecast are: the host where Icecast is located, the port of the Icecast
server (8000 is the default port), the password to connect to the Icecast server,
the mountpoint (this is the name of the radio for Icecast) and finally the source
we want to encode (here, we suppose that our stream is named radio). We can
then listen to the stream by connecting to the url

http://localhost:8000/my-radio.mp3

The url consists of the name of the Icecast server and its port, followed by the
mountpoint. This allows streaming multiple radios in a same server, by giving
them different mountpoint names. For instance, if we have a rock and a techno

stream, we can encode both of them, and encode each of them both in mp3 and
aac with

def out(~mount, enc, s) =

output.icecast(host="localhost", port=8000, password="hackme",

1http://www.icecast.org

http://www.icecast.org

6.6. OUTPUTS 145

mount=mount, enc, s)

end

out(mount="rock.mp3", %mp3, rock)

out(mount="rock.aac", %fdkaac, rock)

out(mount="techno.mp3", %mp3, techno)

out(mount="techno.aac", %fdkaac, techno)

Here, first define a function out which acts as output.icecast, where the com-
mon parameters have been specified in order not to have to repeat them for
each output, and then we define the various outputs. Note that it is absolutely
not a problem that a given source is encoded multiple times (excepting perhaps
that it requires some cpu resources).

Various arguments of output.icecast are available to provide more information
about your radio including its name, genre and provide a description of it. The
argument dumpfile can be useful to store the stream which is sent, in order to
keep it for later inspection, although we would advise setting up a proper file
output as described below.

Casting without ice. If you want to quickly test Icecast output without going
through the hassle of setting up an Icecast server, you can use the output.harbor
operator which will use Liquidsoap’s internal webserver harbor. It will make
Liquidsoap start a server which behaves like Icecast would, and it is as simple
as this:

output.harbor(%mp3, mount="my-radio.mp3", radio)

As you can remark, for output.harbor, you only need to specify the encoding
format, the mountpoint and the source to encode, and it will be available at

http://localhost:8000/my-radio.mp3

for you to listen. You can protect the stream by specifying a user and a password
argument (both need to specified) which will then be required when trying to
listen to the stream:

output.harbor(%mp3, mount="my-radio.mp3",

user="bob", password="secret", radio)

Alternatively, you can also specify an authentication function in the auth argu-
ment: this function itself takes the user and password as arguments and returns
whether the listener should be granted access to the stream. For instance, the
following allows listeners whose password has odd length:

def auth(~address, login, password)

log.important("Authentication from #{login} / #{password}")

string.length(password) mod 2 == 1

end

output.harbor(%mp3, auth=auth, mount="my-radio.mp3", radio)

146 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

The arguments on_connect and on_disconnect are also useful to monitor con-
nections from listeners.

HLS output. In the last few years, people have started moving away from
Icecast and turn to hls to distribute streams. Basically, a stream in hls is a
playlist of very short portions of the stream, called segments, whose duration is
generally between 2 and 10 seconds. The playlist itself contains the last minute or
so of the stream, split in segments, and is regularly updated. Compared to Icecast,
this has the advantage of not requiring a constant connection from the user, and
is thus robust to network changes or disconnections, and moreover, the segments
are regular files and can thus be cached using the standard techniques for serving
files over http. Another useful feature of hls is that multiple encodings of the
same stream can be served simultaneously: typically, one would serve both a
low and a high quality version of the stream, and the user can seamlessly switch
between the two depending on the quality of its connection (e.g. when going
from 3G to 5G on a phone).

The output.file.hls operator takes care of this. It takes as mandatory argu-
ments the directory where all the files will be put (the playlist and the segments),
a list of pairs of stream names and encoding formats (remember that a stream
can be encoded in multiple formats at once), and the source to encode. For
instance, if we have a stream named radio, the script

output.file.hls("/tmp/hls",

[("mp3-low", %mp3(bitrate=96)), ("mp3-hi", %mp3(bitrate=160))],

radio)

will generate an hls stream in the directory /tmp/hls, by encoding the source in
two qualities (mp3-low which is mp3 encoded at the bitrate 96 kbps and mp3-hi

which is mp3 encoded at 160 kbps). The directory /tmp/hls would then typically
be served by an http server. If you have a look at the contents of this directory,
you will see that it contains

• a file stream.m3u8: this is the main playlist that your listeners should listen
to (it links to streams in both qualities, between which the listener is able
to choose),

• files mp3-low.m3u8 and mp3-hi.m3u8: these are the playlists respectively
corresponding to the stream in low and high quality,

• files mp3-low_XX.mp3 and mp3hi_XX.mp3, where XX are numbers: these are
the encoded segments, which are created and removed as the stream goes
by.

Some useful arguments of the output.file.hls operator are the following.

• encode_metadata: whether to add metadata or not in the stream. This is
disabled by default because some players assume that there will be one
stream, and thus stop when they see metadata.

6.6. OUTPUTS 147

• on_file_change: this specifies a function which can be used to execute an
action when a file is created or removed, which can typically to upload
segments to a webserver when they are created and remove them when
they are not in use anymore. This function takes an argument labeled
state and the name of the file concerned. The state is a string which can
be

– "opened": we have opened the file to start writing on it,
– "closed": we have finished writing to the file (and it could thus be

uploaded to a server),
– "removed": we have removed the file (and it could thus be removed

from the server).

A simple example of such a function would be

def on_file_change(~state, fname)

if state == "closed" then

print("The file #{fname} was created.")

elsif state == "removed" then

print("The file #{fname} was removed.")

end

end

Here, we are only printing but, again, we would typically copy the files
somewhere.

• persist_at: this specifies a file name which stores the state of the output
(such as the currently created segments, in json format) and will be used
to properly continue the hls playlist in the case the script is stopped and
restarted.

• playlist: the name of the main playlist, which is "stream.m3u8" by default.

• segment_duration: the duration of each segment, 10 seconds by default.

• segment_name: specify a function to generate the name of the segment
files.

• segments: the number of segments per playlist, 10 by default.

• segments_overhead: the number of segments to keep, which are not any-
more in the playlist, 5 by default. It might happen that some listeners take
some time to download the files, and that they have an “old” version of the
playlist, which will contain names for “old” segments. It is thus important
to keep a few old segments in order to accommodate for such situations.

• streams_info: can be used to specify additional information about the
streams such as the bandwith (in bits per second), the codecs (following
rfc 6381), the extension for the files, and the dimensions in pixels for
video streams.

148 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

A more involved example, inspired of srt2hls1, is

aac_lofi = %ffmpeg(format="mpegts",

%audio(codec="aac", channels=2, ar=44100))

aac_midfi = %ffmpeg(format="mpegts",

%audio(codec="aac", channels=2, ar=44100, b="96k"))

aac_hifi = %ffmpeg(format="mpegts",

%audio(codec="aac", channels=2, ar=44100, b="192k"))

streams = [("aac_lofi", aac_lofi),

("aac_midfi", aac_midfi),

("aac_hifi", aac_hifi)]

def segment_name(~position, ~extname, stream_name) =

timestamp = int_of_float(time())

"#{stream_name}_#{timestamp}_#{position}.#{extname}"

end

output.file.hls(playlist = "live.m3u8",

segment_duration = 2.,

segments = 10,

segments_overhead = 5,

segment_name = segment_name,

persist_at = "state.config",

"/tmp/hls", streams, radio)

It encodes the stream in aac format, in three different qualities, with some
custom parameters set up.

Encoders. Any encoder (see section 6.7) can be used for encoding hls streams
in Liquidsoap. However, the HLS specification2 enforces that the codecs used
should be mp3 and aac, so that you should restrict to those for maximum
compatibility with players. Furthermore, in order to improve compatibility, it is
recommended that sent data encapsulated in an MPEG-TS container: currently,
the only encoder capable of doing this in Liquidsoap is %ffmpeg, as illustrated
above.

Serving with Liquidsoap. It is possible to have Liquidsoap directly serve
the files for the hls stream with its internal web server with the operator
output.harbor.hls (and output.harbor.hls.ssl for encrypting with ssl). The
arguments of this operator are the same as those of output.file.hls, excepting
port and path which respectively specify the port of the server, and the path
where the stream is served. It is not recommended for listener-facing setup,
because we do not consider the internal web server harbor ready for heavy

1https://github.com/mbugeia/srt2hls
2https://tools.ietf.org/html/rfc8216

https://github.com/mbugeia/srt2hls
https://tools.ietf.org/html/rfc8216

6.6. OUTPUTS 149

loads, but it can be useful to sync up with a caching system such as CloudFront.
A simple setup would be

output.harbor.hls(port=8000, path="radio/", [("mp3", %mp3)], radio)

which would make the stream of the radio source available at the url

http://localhost:8000/radio/stream.m3u8

File output. The next output we are going to see is the file output which, as
you would expect, is performed by the operator output.file. It takes three
arguments: the encoding format, the name of the file, and the source we want to
encode in the file. For instance, we can encode a source s in the mp3 file out.mp3
with

output.file(%mp3, "out.mp3", s)

The name of the file can be a string getter, which will dynamically generate the
filename. This is particularly useful in conjunction with time.string in order
to generate a name based on current time, for instance when archiving a radio
stream as in the following example:

output.file(%mp3, {time.string("archive/%Y-%m-%d/%H-%M-%S.mp3")},

radio)↪→

The parameters reopen_when and reopen_on_metadata are particularly useful in
association to this mechanism in order to generate multiple files. The parameter
reopen_when allows to regenerate a new file (with an updated filename) when a
predicate is true. For instance, we can generate an archive per hour with:

output.file(%mp3,

{time.string("archive/%Y-%m-%d/%H-%M-%S.mp3")},

radio, reopen_when={0m})

Here, the predicate {0m} given for the reopen_when argument is true whenever
the current minute is 0, i.e. at the beginning of every hour: we will thus change
file at the beginning of every hour. Whenever a new file is created, the file name
is computed again and will thus be labeled according to current time. Also note
that the directory depends on current time: Liquidsoap will take care of creating
the required directories for us. Reopening of the file can also be performed by
calling the reopen method of the output, so that the above example could also
be rewritten by regularly launching a thread as follows:

f = output.file(%mp3,

{time.string("archive/%Y-%m-%d/%H-%M-%S.mp3")},

radio)

thread.when({0m}, f.reopen)

A similar mechanism can be used to change the file name according to metadata.
In the following example, the name of the file is stored in a reference. We then

150 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

use the reopen_on_metadata argument to register a handler on the stream which,
when there is new metadata, updates the filename accordingly and returns true,
which instructs to reopen the file. It will thus create a new file for each track,
whose name is determined by the metadata.

filename = ref("archive/default.mp3")

def handle_metadata(m)

filename := "archive/#{m['artist']} - #{m['title']}.mp3"

true

end

f = output.file(%mp3, filename, radio,

reopen_on_metadata=handle_metadata)

The argument on_close can be used to specify a function which is called when-
ever we have finished writing to a file: this function takes the filename as
argument. This is particularly useful to upload archive files to a backup server.
For instance, in the script

def on_file(fname)

log.important("Making a backup of #{fname}.")

process.run("cp #{fname} /radio/backup/")

end

output.file(%mp3, {time.string("archive/%Y-%m-%d/%H-%M-%S.mp3")},

radio,↪→

reopen_when={0m}, on_close=on_file)

the function on_file is called each time an archive file is created. Here, we call
a command to simply copy this file to the /radio/backup directory, but a more
realistic application would for instance upload it on an ftp server or so.

Some other useful optional arguments of the output.file operator are

• append: when set to true, the file will not be overwritten if it exists, but
new data will be added at the end instead,

• fallible: when set to true the operator will accept fallible sources, it will
start recording the source when it is available and stop when this is not
the case anymore,

• on_start and on_stop specify functions which are called whenever the
source starts or stops.

The on_stop function is particularly useful when fallible is set to true: this
allows calling a function when the source fails, see section 6.10 for a concrete
application.

YouTube. Another way to stream your radio to the world consists in using
the usual video streaming platforms to deliver the contents. Let us illustrate
this by sending our radio stream to YouTube (the setup for streaming to other

6.6. OUTPUTS 151

platforms such as Twich or Facebook live should more or less be the same). This
is done as follows:

radio = playlist("~/Music")

video = single("image.jpg")

radio = source.mux.video(video=video, radio)

ykey = string.trim(file.contents("youtube-key"))

url = "rtmp://a.rtmp.youtube.com/live2/#{ykey}"

enc = %ffmpeg(format="flv",

%video(codec="libx264", pixel_format="yuv420p",

b="300k", preset="superfast", r=25, g=50),

%audio(codec="libmp3lame", samplerate=44100, b="160k"))

output.url(fallible=true, url=url, enc, radio)

The first thing we need to do here is to generate a video stream. Fancy ways
to achieve this are detailed in chapter 7. Here, we simply take an image
image.jpg, generate a video stream from it and add it to the radio stream us-
ing the source.mux.video operator. Note that if you wanted to stream a video
video.mp4 instead of a static image, you could simply replace the second line by

video = single("video.mp4")

as expected. Now that our radio stream has both audio and video, we need to
send it to YouTube. In order to do so, you first need to obtain the stream key

from YouTube studio1: this is the secret key which will allow us to send our
stream. Since we do not like to put secrets in Liquidsoap scripts, we suppose
that it is stored in the file youtube-key and read it in the variable ykey: the
function file.contents returns the contents of the file and the string.trim

function removes extraneous spaces or newlines that you might have put around
the key. Finally, we specify in enc the way we want to encode video. Here,
we use the FFmpeg encoder %ffmpeg which is further described in section 6.7,
and encode the video in H.264 using the libx264 encoder and the audio in
mp3 using the libmp3lame encoder. These settings should get you started on
most setups, however they require fine-tuning in order to improve quality,
following explanations of section 6.7 and chapter 7. In particular, the video
bitrate given by b="300k" is very low in order to make sure that it will be
working on any internet connection: if you have a fast one we suggest that
you increase this to something like 2000k in order to have decent video quality.
Finally, we store in url the address where we should stream (for YouTube, this is
rtmp://a.rtmp.youtube.com/live2/ followed by the key) and use the output.url
operator to send our stream radio encoded with the encoder enc to the url.

SRT. In order to send a stream on a local network, we recommend the use of the
srt protocol, using the output.srt operator, which has a low latency and can

1https://studio.youtube.com/

https://studio.youtube.com/

152 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

cope with network problems. This operator has two modes, which are specified
by the mode argument.

• In "caller" mode, which is the default one, it initiates a connection to a
remote server (specified by the parameters host and port). For instance,

s = playlist("~/Music")

output.srt(fallible=true, host="localhost", %wav, s)

will connect to an srt server on localhost on the default port 8000 (this
client would typically be another instance of Liquidsoap with an input.srt

input in "listener" mode) and stream the source s in wav format.

• In "listener" mode, it waits for clients to connect to it to send them the
stream. The port argument specifies the port it listens to. For instance,
the script will send the stream of the source s encoded in mp3 when a
client connects to it:

s = playlist("~/Music")

output.srt(fallible=true, mode="listener", %mp3, s)

The stream can then be played by another Liquidsoap script with an
input.srt in "caller" mode, or with external tools such as ffplay:

ffplay srt://localhost:8000

6.7 Encoding formats

The encoding formats are specified by expressions of the form

%encoder

or

%encoder(parameters...)

if we need to specify some parameters. For instance, the encoding format for
mp3, with default parameters, is

%mp3

and the format for mp3 at 192 kbps in joint stereo is

%mp3(bitrate=192, stereo_mode="joint_stereo")

This means that if we want to use this for a harbor output, we will write

output.harbor(%mp3(bitrate=192, stereo_mode="joint_stereo"),

mount="my-radio.mp3", radio)

6.7. ENCODING FORMATS 153

Liquidsoap has support for almost every common standard format. We explain
here the main ones and refer to the online documentation1 for further details.

MP3. The mp3 format is perhaps the most widespread and well-supported com-
pressed audio format. It provides reasonable quality and reasonable compression,
so that it is often a good choice. There are three variants of the mp3 encoder
depending on the way you want to handle bitrate (the number of bits of data
per second the encoder will produce):

• %mp3 or %mp3.cbr: constant bitrate encoding,
• %mp3.vbr: variable bitrate, quality-based, encoding,
• %mp3.abr: average bitrate based encoding,
• %mp3.fxp or %shine: constant bitrate fixed-point encoding.

The first one is predictable: it will always output the same amount of data. The
second one is more adaptative: it will produce much data when the stream is
“complex”, and less when it is more “simple”, which means that we get a stream
of better quality, but whose bitrate is less predictable. The third one is a balance
between the two: it will adapt to the complexity of the stream, but will always
output the same bitrate on the average. You should rarely have to use the last
one: it is a constant bitrate encoder, like %mp3, which does not use floating point
computations (fxp stands for fixed-point), and is thus more suitable for devices
without hardware support for floats, such as some low-end embedded devices.

The parameters common to all variants are

• stereo is either false or true: encode in mono or stereo (default is stereo),
• stereo_mode is either "stereo" or "joint_stereo" or "default": encode
left and right channels separately or conjointly (default is "default"),

• samplerate is an integer: number of samples per seconds in the encoded
stream (default is 44100),

• internal_quality is an integer between 0 and 9: controls the quality of
the encoding, 0 being the highest quality and 9 being the worst (default
is 2, the higher the quality the more cpu encoding takes),

• id3v2 is either false or true: whether to add Id3v2 tags (i.e. metadata in
our terminology) to the stream (default is false).

The parameters for %mp3 are

• bitrate: the fixed bitrate in kilobits per second (kbps) of the encoded
stream (common values are 128, 160 and 192 kbps, higher means better
quality but also higher bandwidth).

The parameters for %mp3.vbr are

• quality: quality of encoded data from 0 (the highest quality) to 9 (the
worst quality).

1https://www.liquidsoap.info/doc-dev/encoding_formats.html

https://www.liquidsoap.info/doc-dev/encoding_formats.html

154 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

The parameters for %mp3.abr are

• bitrate: average bitrate (kbps),
• min_bitrate: minimun bitrate (kbps),
• max_bitrate: maximun bitrate (kbps),
• hard_min: minimal bitrate to enforce (kbps).

The parameters for %mp3.fxp are

• channels: the number of audio channels (typically 2 for stereo),
• samplerate: the desired samplerate (typically 44100),
• bitrate: the desired bitrate (in kbps, typically 128).

For instance, constant 128 kbps bitrate encoding is achieved with

%mp3(bitrate=128)

Variable bitrate with quality 7 and samplerate of 22050 Hz is

%mp3.vbr(quality=7, samplerate=22050)

Average bitrate with mean of 128 kbps, maximun bitrate 192 kbps and ID3v2
tags is

%mp3.abr(bitrate=128, max_bitrate=192, id3v2=true)

Fixed-point encoding in stereo at 44100 Hz at 128 kbps is

%mp3.fxp(channels=2, samplerate=44100, bitrate=128)

Wav. wav is a non-compressed format: this means that you do not lose anything,
but it takes quite some space to store audio. Not recommended for streaming,
but rather for archiving. The parameters are

• channels: the number of channels (1 and 2 can also respectively be speci-
fied with mono and stereo),

• duration: duration in seconds to set in the wav header,
• samplerate: the number of samples per second,
• samplesize: the number of bits per sample (only the values 8, 16, 24 and
32 are supported for now, 16 being the reasonable default),

• header: whether a header should be issued or not (the value false means
no header, and can be used for exchanging raw pcm data).

For instance,

%wav(stereo=true, channels=2, samplesize=16, header=true, duration=10.)

Because Liquidsoap encodes a possibly infinite stream, there is no way to know
in advance the duration of encoded data. However, the wav header has to be
written first, and its length is thus set to the maximum possible value by default.
If you know the expected duration of the encoded data and you actually care
about the wav length header then you should use the duration parameter.

6.7. ENCODING FORMATS 155

Ogg. Liquidsoap has native support for Ogg which is a container: it is a file
format which can contain multiple streams (typically, audio and/or video). The
syntax for encoding in Ogg is %ogg(...), where the ... is a list of streams. The
currently supported encoders for the streams themselves are Opus, Vorbis, Speex
and flac for audio, and Theora for video. For instance, we can encode an Opus
stream in an Ogg container with the encoder

%ogg(%opus)

For convenience, it is possible to simply write

%opus

instead of %ogg(%opus), and similarly for other encoders. All Ogg encoders
have a bytes_per_page parameter, which can be used to try to limit Ogg logical
pages size, in bytes: this is the minimal amount of data which has to be read
contiguously. For instance,

%opus(bytes_per_page=1024)

The usual value is between 4 kB and 8 kB.

Ogg/Opus. The Opus codec is an open-source codec intended as a modern
replacement of both standard codecs (mp3, Vorbis) and highly compressed codecs
(aac, Speex). This is the one you should use by default for sound encapsulated
in Ogg, unless you have specific needs. It has the same or better quality than
equivalent codecs and is free (both as in beer and as in speech). The only
drawback is that it is slightly less supported on the user-end than mp3 and aac,
although it tends to be less and less the case.

The encoder is named %opus and its parameters are

• samplerate: samples per second (must be one of 8000, 12000, 16000, 24000
or 48000, default is 48000),

• channels: number of audio channels (must be 1 or 2, default is 2, you
can also write mono or stereo instead of channels=1 or channels=2 respec-
tively),

• vbr specifies whether we want variable bitrate or not: it can either be
"none" (for constant bitrate), "constrained" (for variable bitrate with con-
straints such as average target bitrate) or "unconstrained" (for uncon-
strained variable bitrate, which is the default),

• bitrate: encoding bitrate, in kilobits per second (between 5 and 512, can
also be "auto" to leave the decision to the encoder which is the default),

• signal: can either be "music" or "voice" to specify the kind of input
(this will influence the parameters of the encoder, by default the encoder
regularly automatically determines the kind of input),

• complexity: the computational complexity between 0 (the fastest encoding,
the lowest quality) and 10 (the slowest encoding and highest quality, which

156 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

is the default),
• frame_size: encoding frame size, in milliseconds (must be one of 2.5, 5.,
10., 20., 40. or 60.), smaller frame sizes lower latency but degrade quality,
default is 20,

• application specifies the target application: "audio" (the encoder de-
termines it automatically, the default), "voip" (transmit voice over the
internet) or "restricted_lowdelay" (lower the encoding delay down to
5 ms),

• max_bandwidth specifies the bandwidth of the sound to encode: can
be "narrow_band" (for 3–4000 Hz), "medium_band" (for 3–6000 Hz),
"wide_band" (for 3–8000 Hz), "super_wide_band" (for 3–12000 Hz) or
"full_band" (for 3–20000 Hz), this is automatically detected by default,

• dtx: when set to true, the bitrate is reduced during silence or background
noise,

• phase_inversion: when set to false, disables the use of phase inversion for
intensity stereo, improving the quality of mono downmixes, but slightly
reducing normal stereo quality.

More information about the parameters can be found in the Opus documenta-
tion1. A typical encoder would be

%opus(samplerate=48000, bitrate=192, vbr="none", application="audio",

channels=2, signal="music", max_bandwidth="full_band")

Ogg/Vorbis. Vorbis is an audio codec which was developed as an open-source
replacement for mp3. It is now largely considered as superseded by Opus. There
are three variants of the encoder:

• %vorbis: quality-based encoder,
• %vorbis.abr: encoder with variable bitrate,
• %vorbis.cbr: encoder with fixed constant bitrate.

The common parameters are

• channels: the number of audio channels (mono and stereo are also sup-
ported for 1 and 2 channels, the default is 2),

• samplerate: the number of samples per second (the default is 44100).

The parameters specific to %vorbis are

• quality: the quality of the stream between -0.1 (the lowest quality and
smallest files) and 1 (the highest quality and largest files).

The parameters specific to %vorbis.abr are

• bitrate: the target average bitrate (in kilobits per second),
• min_bitrate and max_bitrate: the minimal and maximal bitrates.

1http://www.opus-codec.org/docs/

http://www.opus-codec.org/docs/

6.7. ENCODING FORMATS 157

The parameters specific to %vorbis.cbr are

• bitrate: the target bitrate (in kilobits per second).

For instance, a variable bitrate encoding can be achieved with

%vorbis(samplerate=44100, channels=2, quality=0.3)

an average bitrate encoding with

%vorbis.abr(samplerate=44100, channels=2, bitrate=128,

min_bitrate=64, max_bitrate=192)

and a constant bitrate encoding with

%vorbis.cbr(samplerate=44100, channels=2, bitrate=128)

Ogg/Speex. The Speex codec is dedicated to encoding at low bitrates, targeting
applications such as the transmission of voice over the internet, where having
uninterrupted transmission of the stream, with low latency, is considered more
important than having high-quality sound. It is now considered as superseded
by the Opus codec.

The encoder is named %speex and its parameters are

• samplerate: the number of samples per second,
• mono / stereo: set the number of channels to 1 or 2,
• abr: encode with specified average bitrate,
• quality: use quality based encoding with specific value between 0 (the
lowest quality) and 10 (the highest quality), default being 7,

• vbr: encode with variable bitrate,
• mode sets the bandwidth of the signal: either "narrowband" (8 kHz, default),
"wideband" (16 kHz) or "ultra-wideband" (32 kHz),

• complexity: the computational complexity between 1 (the fastest encoding
and lowest quality) and 10 (the slowest encoding and highest quality),

• vad: when set to true detects whether the audio being encoded is speech
or silence/background noise,

• dtx: when set to true further reduce the bitrate during silence.

Ogg/FLAC. The last audio codec supported in the Ogg container is flac. Con-
trary to other codecs, it is a lossless one, which means that, after decoding, you
get the exact same signal you encoded. However, the signal is still compressed
in the sense that encoded sound takes less space than the raw data, as found for
instance in the wav format. By opposition, most other codecs are lossy: they
deliberately forget about some parts of the signal in order to achieve higher
compression rates.

The flac encoding format comes in two flavors:

158 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

• %flac is the native flac format, useful for file output but not for streaming
purpose,

• %ogg(%flac) is the Ogg/flac format, which can be used to broadcast data
with Icecast.

Note that contrarily to most other codecs, the two are not exactly the same.

The parameters are

• channels: the number of audio channels (2 by default, mono and stereo

can also be used instead of channels=1 and channels=2),
• samplerate: the number of samples per second (44100 by default),
• bits_per_sample: the number of bits per sample, must be one of 8, 16, 24
or 32, the default being 16,

• compression: the compression level between 0 (faster compression time,
lower compression rates)) and 8 (slower compression time, higher com-
pression rate), default being 5.

For instance,

%flac(samplerate=44100, channels=2, compression=5, bits_per_sample=16)

A typical compression achieves around 75% of the original size for a rock song
and 50% for a classical music song.

AAC. The aac codec (aac stands for Advanced Audio Coding) was designed to
be a better replacement formp3: it achieves better quality at the same bitrates and
can decently encode the stream it low bitrates. Unlike Opus, its main competitor,
patent license is required for distributing an aac codec. However, it has better
hardware support, especially on low-end devices.

The encoder is called %fdkaac and its parameters are

• channels: the number of audio channels (2 by default),
• samplerate: the number of samples per second,
• bitrate: encode at given constant bitrate,
• vbr: encode in variable bitrate with given quality between 1 (lowest bitrate
and quality) to 5 (highest bitrate and quality),

• aot: specifies the audio object type (the kind of encoding for aac data,
which has influence on quality and delay): it can either be "mpeg4_aac_lc",
"mpeg4_he_aac", "mpeg4_he_aac_v2" (the default), "mpeg4_aac_ld",
"mpeg4_aac_eld", "mpeg2_aac_lc", "mpeg2_he_aac" or "mpeg2_he_aac_v2",

• bandwidth: encode with fixed given bandwidth (default is "auto", which
means that the encoder is free to determine the best one),

• transmux: sets the transport format, should be one of "raw", "adif", "adts"
(the default), "latm", "latm_out_of_band" or "loas",

• afterburner: when set to true use afterburner which should increase
quality, but also encoding time,

6.7. ENCODING FORMATS 159

• sbr_mode: when set to true, use spectral band replication, which should
enhance audio quality at low bitrates.

More information about the meaning of those parameters can be found in the
hydrogenaudio knowledge base1. For instance,

%fdkaac(channels=2, bandwidth="auto", bitrate=64, afterburner=false,

aot="mpeg2_he_aac_v2", transmux="adts", sbr_mode=false)

GStreamer. The %gstreamer encoder can be used to encode streams using
the GStreamer multimedia framework, which handles many formats, and can
provide effects and more on the stream. It is quite useful, although its support in
Liquidsoap should be considered as much less mature than the FFmpeg encoder,
which fulfills similar purposes, and is presented next.

The parameters of the %gstreamer encoder are

• channels: the number of audio channels (2 by default),
• log: the log level of GStreamer between 0 (no message) and 9 (very very
verbose), default is 5.

In GStreamer, pipelines describe sequences of GStreamer operators to be ap-
plied, separated by !, see also section 6.1. Those are specified by three further
parameters of the encoder:

• audio: the audio pipeline (default is "lamemp3enc", the lame mp3 encoder),
• video: the video pipeline (default is "x264enc", the x264 H.264 encoder),
• muxer: the muxer which takes care of encapsulating both audio and video
streams (default is "mpegtsmux", which performs mpeg-ts encapsulation).

If the audio pipeline is not empty then the number of audio channels specified
by the channels parameter is expected, and if the video pipeline is not empty
then one video channel is expected.

For instance, we can encode a source in mp3 with

%gstreamer(channels=2, audio="lamemp3enc", video="", muxer="")

The metadata of the encoded is passed to the pipeline element named "metadata"

(the name can be changed with the metadata parameter of %gstreamer) using
the “tag setter” api. We can thus encode our stream in mp3 with tags using

%gstreamer(audio="lamemp3enc", video="",

muxer="id3v2mux name='metadata'")

or in Vorbis with tags using

%gstreamer(audio="vorbisenc ! vorbistag name='metadata'", video="",

muxer="oggmux")

1http://wiki.hydrogenaud.io/index.php?title=Fraunhofer_FDK_AAC

http://wiki.hydrogenaud.io/index.php?title=Fraunhofer_FDK_AAC

160 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

Encoding a video in H.264 withmp3 audio encapsulated inmpeg transport stream
is performed with

%gstreamer(audio="lamemp3enc", video="x264enc", muxer="mpegtsmux")

and in Ogg/Vorbis+Theora with

%gstreamer(audio="vorbisenc", video="theoraenc", muxer="oggmux")

The audio, video and muxer are combined internally to form one (big) GStreamer
pipeline which will handle the whole encoding. For instance, with previous
example, the generated pipeline is indicated with the following debug message:

[encoder.gstreamer:5] GStreamer encoder pipeline: appsrc

name="audio_src" block=true caps="audio/x-raw, format=S16LE,

layout=interleaved, channels=2, rate=44100" format=time

max-bytes=40960 ! queue ! audioconvert ! audioresample ! vorbisenc

! muxer. appsrc name="video_src" block=true caps="video/x-raw,

format=I420, width=1280, height=720, framerate=25/1,

pixel-aspect-ratio=1/1" format=time blocksize=3686400

max-bytes=40960 ! queue ! videoconvert ! videoscale

add-borders=true ! videorate ! theoraenc ! muxer. oggmux name=muxer

! appsink name=sink sync=false emit-signals=true

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

For advanced users, the pipeline argument can be used to directly specify the
whole pipeline. In this case, the parameter has_video is used to determine
whether the stream has video or not (video is assumed by default). For instance,
mp3 encoding can also be performed with

%gstreamer(pipeline="appsrc name=\"audio_src\" block=true

caps=\"audio/x-raw,format=S16LE,layout=interleaved,

channels=1,rate=44100\"

format=time ! lamemp3enc !

appsink name=sink sync=false emit-signals=true", has_video=false)

Beware that, when using the %gstreamer encoder, you should consider that
the stream you are encoding is infinite (or could be). This means that not all
containers (and muxers) will work. For instance, the avi and mp4 containers
need to write in their header some information that is only known with finite
streams, such as the total time of the stream. These containers are usually not
suitable for streaming, which is the main purpose of Liquidsoap.

FFmpeg. The %ffmpeg encoder is a “meta-encoder”, just like the GStreamer
one: it uses the versatile FFmpeg library in order to encode in various formats,
including the ones presented above, but also many more. The general syntax is

%ffmpeg(format="<format>", ...)

6.7. ENCODING FORMATS 161

where <format> is the container type and ... is the list of streams we want to
encode. All FFmpeg muxers1 should be supported as formats, the full list can
also be obtained by running ffmpeg -formats. The special value none is also
supported as format, in which case the encoder will try to find the best possible
one.

Each stream can either be

• %audio: for encoding native audio (this is the one you generally want to
use),

• %audio.raw: for encoding audio in FFmpeg’s raw format,
• %audio.copy: for transmitting encoded audio (see below),
• %video / %video.raw / %video.copy: similar but for video (this will be de-
veloped in section 7.3).

The %audio and %audio.raw streams all take as parameters

• codec: the name of the codec to encode the stream (all FFmpeg codecs2
should be supported here, you can run the command ffmpeg -codecs to
have a full list),

• channels: the number of audio channels,
• samplerate: the number of samples per second,

as well as parameters specific to the codec (any option supported by FFmpeg
can be passed here). If an option is not recognized, it will raise an error during
the instantiation of the encoder.

For instance, we can encode in aac using the mpeg-ts muxer and the fdk aac
encoder, at 22050 Hz with

%ffmpeg(format="mpegts",

%audio(codec="libfdk_aac", samplerate=22050, b="32k",

afterburner=1, profile="aac_he_v2"))

The profile aac_he_v2 we use here stands for high-efficiency version 2 and is
adapted for encoding at low bitrates. Here is a list of profiles you can use

• aac_he_v2: bitrates below 48 kbps,
• aac_he: bitrates between 48 kpbs and 128 kbps,
• aac_low: the default profile (low complexity), adapted for bitrates above
128 kbps.

We can encode in aac in variable bitrate with

%ffmpeg(format="mpegts",

%audio(codec="libfdk_aac", samplerate=22050, b="32k",

afterburner=1, profile="aac_he_v2"))

1https://ffmpeg.org/ffmpeg-formats.html#Muxers
2https://ffmpeg.org/ffmpeg-codecs.html

https://ffmpeg.org/ffmpeg-formats.html#Muxers
https://ffmpeg.org/ffmpeg-codecs.html

162 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

where vbr specifies the quality between 1 (the lowest quality and bitrate) and
5 (the highest quality and bitrate). We can encode mp3 at constant bitrate of
160 kbps with

%ffmpeg(format="mp3",

%audio(codec="libmp3lame", b="160k"))

We can encode mp3 in variable bitrate quality 4 with

%ffmpeg(format="mp3",

%audio(codec="libmp3lame", samplerate=44100, q=4))

where quality ranges from 0 (the highest quality, 245 kbps average bitrate) to
9 (the lowest quality, 65 kbps average bitrate). We can encode mp3 in variable
bitrate with 160 kbps average bitrate with

%ffmpeg(format="mp3",

%audio(codec="libmp3lame", b="160k", abr=1))

An encoding in Ogg/Opus with default parameters can be achieved with

%ffmpeg(format="ogg", %audio(codec="libopus", samplerate=48000))

Beware that the codec is libopus (not opus which is for standalone Opus) and
that the default samplerate of 44100 is not supported in the Opus format (which
is why we force the use of 48000 instead).

Some encoding formats, such aswav, avi or mp4, require rewinding their stream
and write a header after the encoding of the current track is over. For historical
reasons, such formats cannot be used with output.file. To remedy that, we
have introduced the output.url operator. When using this operator, the encoder
is fully in charge of the output file and can thus write headers after the encoding.
The %ffmpeg encoder is one such encoder that can be used with this operator.

Encoded streams. By default, all the sources manipulate audio (or video)
in Liquidsoap’s internal format, which is raw data: for audio, it consists in
sequences of samples (which are floats between -1 and 1). This is adapted to the
manipulations of streams we want to make, such as applying effects or switching
between sources. Once we have properly generated the stream, the outputs
use encoders to convert this to compressed formats (such as mp3) which take
less space. We detail here a unique feature of the FFmpeg encoder: the ability
to directly manipulate encoded data (such as audio encoded in mp3 format)
within Liquidsoap, thus avoiding useless decoding and re-encoding of streams
in some situations. Note that most usual operations (even changing the volume
for instance) are not available on encoded sources, but this is still quite useful in
some situations, mainly in order to encode multiple times in the same format.

Remember that we can encode audio in mp3 format using FFmpeg with the
encoder

6.7. ENCODING FORMATS 163

%ffmpeg(format="mp3", %audio(codec="libmp3lame))

This says that we want to generate a file in the mp3 format, and that we should
put in audio which is encoded in mp3 with the lame library. Now, if we change
this to

%ffmpeg(format="mp3", %audio.copy)

this says that we want to generate a file in the mp3 format, and that we should
put in directly the stream we receive, which is supposed to be already encoded.
The name %audio.copy thus means here that we are going to copy audio data,
without trying to understand what is in there or manipulate it in any way.

Streaming without re-encoding. As a first example, consider the following very
simple radio setup:

radio = playlist("~/Music")

output.icecast(fallible=true, mount="radio", %mp3, radio)

Our radio consists of a playlist, that we stream using Icecast in mp3. When
executing the script, Liquidsoap will decode the files of the playlist in its internal
format and then encode them in mp3 before sending them to Icecast. However,
if our files are already in mp3 we are doing useless work here: we are decoding
mp3 files and then encoding them in mp3 again to broadcast them. Firstly, this
decoding-reencoding degrades the audio quality. And secondly, this is costly in
terms of cpu cycles: if we have many streams or have more involved data such
as video, we would rather avoid that. This can be done as explained above as
follows:

radio = playlist("~/Music")

output.icecast(fallible=true, format="audio/mpeg", mount="radio",

%ffmpeg(format="mp3", %audio.copy), radio)

Here, since we use the FFmpeg encoder with %audio.copy, Liquidsoap knows that
we want radio to contain encoded data, and it will propagate this information to
the playlist operator, which will thus not try to decode the audio files. Note that
the output.icecast operator cannot determine the mime type from the encoder
anymore, we thus have to specify it by hand with format="audio/mpeg".

Again, this is mostly useful for relaying encoded data, but we loose much of the
Liquidsoap power, which does not know how to edit encoded data. For instance,
if we insert the line

radio = amplify(0.8, radio)

in the middle, in order to change the volume of the radio, we will obtain the
error

Error 5: this value has type

source(audio=pcm(_),...)

164 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

but it should be a subtype of

source(audio=ffmpeg.audio.copy(_),...)

which says that amplify is only able to manipulate audio data in in-
ternal format (audio=pcm(_)) whereas we have here encoded data
(audio=ffmpeg.audio.copy(_)).

Now, suppose that, in addition to transmitting the mp3 files through Icecast, we
also want to provide another version of the stream in Opus. In this, case we need
to decode the stream provided by the source, which is encoded in mp3, before
being able to convert it in Opus. This can be achieved with ffmpeg.decode.audio,
which will decode any encoded stream into Liquidsoap internal format, after
which we can handle it as usual:

radio = playlist("~/Music")

output.icecast(fallible=true, format="audio/mpeg", mount="radio",

%ffmpeg(format="mp3", %audio.copy), radio)

radio = ffmpeg.decode.audio(radio)

From there the radio source is decoded

output.icecast(fallible=true, format="audio/mpeg", mount="radio-opus",

%opus, radio)

Incidentally, the functions ffmpeg.decode.video and ffmpeg.decode.audio_video
are also provided to decode streams with video and both audio and video
respectively.

Encode once, output multiple times. It sometimes happens that we want to have
the same source, encoded in the same format, by multiple outputs. For instance,
in the following script, we have a radio source that we want to encode in mp3
and output in Icecast, in hls and in a file:

output.icecast(%mp3, mount="radio", radio)

output.file.hls("hls", [("mp3", %mp3)], radio)

output.file(%mp3, "radio.mp3", radio)

Because there are three outputs with %mp3 format, Liquidsoap will encode the
stream three times in the same format, which is useless and can be costly
if you have many streams or, worse, video streams. We would thus like to
encode in mp3 once, and send the result to Icecast, hls and the file. This can be
achieved by using the ffmpeg.encode.audio operator which will turn our source
in Liquidsoap’s internal format into one with encoded audio (using FFmpeg).
This encoded audio can then be passed to the various outputs using the %ffmpeg
encoder with %audio.copy to specify that we want to simply pass on the encoded
audio. Concretely, the following script will encode the radio source once in mp3,
and then broadcast it using Icecast, hls and file outputs:

radio = ffmpeg.encode.audio(%ffmpeg(%audio(codec="libmp3lame")), radio)

From there the radio source is in mp3 format

6.7. ENCODING FORMATS 165

output.icecast(fallible=true, format="audio/mpeg",

%ffmpeg(format="mp3", %audio.copy), mount="radio", radio)

output.file.hls(fallible=true, "hls",

[("mp3", %ffmpeg(format="mp3", %audio.copy))], radio)

output.file(fallible=true, %ffmpeg(format="mp3", %audio.copy),

"radio.mp3", radio)

For technical reasons, the output of ffmpeg.encode.audio is always fallible.
We thus now have to pass the argument fallible=true to all outputs in
order to have them accept this. As expected, Liquidsoap also provides
the variants ffmpeg.encode.video and ffmpeg.encode.audio_video of the
ffmpeg.encode.audio function in order to encode video sources or sources with
both audio and video.

Note that the function ffmpeg.decode.audio can be thought of as an “inverse”
of the function ffmpeg.encode.audio: this means that the script

s = ffmpeg.encode.audio(%ffmpeg(%audio(codec="libmp3lame")), s)

s = ffmpeg.decode.audio(s)

output(s)

will play the source s, after uselessly encoding it in mp3 and decoding it back to
Liquidsoap’s internal format for sources.

External encoders. Although the %ffmpeg encoder does almost everything one
could dream of, it is sometimes desirable to use an external program in order to
encode our audio streams. In order to achieve this, the %external encoder can
be used: with it, an external program will be executed and given the audio data
on the standard input (as interleaved little-endian 16 bits integer samples), while
we expect to read the encoded data on the standard output of the program.

The parameters of the %external encoder are

• process: the name of the program to execute,
• channels: the number of audio channels (2 by default),
• samplerate: the number of samples per seconds (44100 by default),
• header: whether a wav header should be added to the audio data (true by
default),

• restart_on_metadata or restart_after_delay: restart the encoding pro-
cess on each new metadata or after some time (in seconds),

• restart_on_crash: whether to restart the encoding process if it crashed
(this is useful when the external process fails to encode properly data after
some time).

For instance, we can encode inmp3 format using the lame binary with the encoder

%external(process="lame - -")

166 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

Videos can also be encoded by external programs, by passing the flag video=true

to %external: in this case, the data is given in avi format on the standard input.
For instance, a compressed Matroska file (with H.264 video and mp3 audio) can
be produced using the ffmpeg binary with

%external(video=true,

process="ffmpeg -f avi -i pipe:0 -f matroska \

-c:v libx264 -c:a libmp3lame pipe:1")

6.8 Interacting with other programs

We now present the various ways offered by Liquidsoap in order to interact with
other programs.

Sound from external sources. Let us first investigate the ways we provide in
order to exchange audio data with other programs.

JACK. If the other program has support for it, the best way to exchange audio
data is to use the jack library

1, which is dedicated to this and provides very good
performances and low latency. In order to use it, you first need to run a jack
server: this is most easily done by using applications such as QjackCtl which
provides a convenient graphical interface. Once this is done, the applications
using jack export virtual ports which can be connected together.

In Liquidsoap, you can use the operator output.jack to create a port to which
the contents of a source will be streamed, and input.jack to create a port from
which we should input a stream. When using this operators, it is a good idea to
set the id parameter, which will be used as the name of the application owning
the virtual ports.

For instance, in order to shape the sound of our radio, we might want to use
JAMin

2, which is an audio mastering tool providing a multiband equalizer, a
multiband compressor, a limiter, a spectrum analyzer and various other useful
tools along with a graphical interface:

1https://jackaudio.org/
2http://jamin.sourceforge.net/

https://jackaudio.org/
http://jamin.sourceforge.net/

6.8. INTERACTING WITH OTHER PROGRAMS 167

In order to do so, our script might look like this:

radio = mksafe(playlist("~/Music"))

output.jack(id="my-radio-out", radio)

radio2 = input.jack(id="my-radio-in")

output.icecast(mount="radio", %mp3, radio2)

We generate a radio source (here, this is a simple playlist), and send it to jack
using output.jack. Then we receive audio from jack using input.jack and
output it to Icecast. Finally, using an external tool such as QjackCtl we need to
connect the output we created to JAMin, as well as the output of JAMin to our
script:

External decoders/encoders. If jack is not available, a more basic way of interact-
ing with external tools is by the pipe operator, which runs the program specified
in the process argument, writes audio to the standard input of the program and

168 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

reads the audio from the standard output of the program. Both input and output
are supposed to be encoded in wav format. For instance, instead of using the
Stereo Tool library (as explained in section 6.5), you could also use the binary to
process your sound as follows to perform mastering:

s = pipe(replay_delay=1.,

process='/usr/bin/stereo_tool_cmd_64 - - -s myradio.sts -k "seckey"',

s)

(where you should replace /usr/bin/stereo_tool_cmd_64 by the actual path
where the Stereo Tool binary is located, myradio.sts by your configuration file,
and seckey by your actual license key).

By default, the pipe operator launches a new process on each new track. How-
ever, this does not play well with Stereo Tool which needs to be run continuously:
this is why we set replay_delay to 1, which means that we want to keep the
same process across tracks and that metadata should be passed from the input
to the output source with a delay of 1 second (which is approximately the delay
introduced by the tool to process sound).

As another illustration, we can use the ffmpeg binary in order to amplify a source
s with

s = pipe(process="ffmpeg -i - -filter:a volume=1.5 -f wav -", s)

Of course, in practice, using the builtin amplify operator is a much better idea if
you simply want to change the volume.

Running external programs. We also have the possibility of executing exter-
nal programs for performing various actions, by using the process.run function.
For instance, suppose that we have a program send-text-msg to send a text
message to the owner of the radio. The script

radio = blank.detect(

{process.run("send-text-msg 'The radio is streaming blank!'")},

radio)

uses the blank.detect operator, which calls a function when blank is detected
on a source, and runs this program in order to alert that the radio has a problem.

The function process.run optionally takes an argument timeout which specifies
the maximum number of seconds the program can take (if this is exceeded, the
program is ended). It returns a record whose fields are as follows:

• status: a string describing how the program ended. It can either be

– "exited": the program exited normally (this is the value usually
returned),

– "stopped": the program was stopped (it has received a STOP signal),
– "killed": the program was killed (it has received a KILL signal),

6.8. INTERACTING WITH OTHER PROGRAMS 169

– "exception": program raised an exception.

This field itself has two fields detailing the return value:

– code: this is an integer containing the return code if the program
exited, or the signal number if the program was stopped or killed,

– description: a string containing details about the exception in the
case the program raised one.

• stdout: what the program wrote on the standard output,

• stderr: what the program wrote on the standard error.

In the vast majority of cases, the program will return "exit" as status, in which
case one should check whether the return code is 0 (the program ended normally)
or not (the program ended with an error, and the status generally indicates the
cause of an error leading to the end of the program, in a way which depends
on the program). One thus typically checks for the end of the program in the
following way:

p = process.run("my-prog")

if p.status == "exit" and p.status.code == 0 then

print("The program exited normally.")

else

print("An error happened while running the program: \

#{p.status} #{p.status.code}.")

end

For convenience, the function process.test essentially implements this and
returns whether the process exited correctly or not, which is convenient if you
do not need to retrieve the standard output or error:

if process.test("my-prog") then

print("The program exited normally.")

else

print("An error happened.")

end

The field stdout of the returned value contains what the program printed on
the standard output. For instance, in the script

p = process.run("ls -R ~/Music | wc -l")

if p.status == "exit" and p.status.code == 0 then

n = int_of_string(string.trim(p.stdout))

print("We have #{n} files in the library.")

end

we use process.run to execute the command

find ~/Music -type f | wc -l

170 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

which prints the number of files in the ~/Music directory, we then read the
standard output, use string.trim to remove the newline printed after the number,
and then int_of_string to convert this value to an integer. Finally, we print
the number of files. For convenience, the command process.read executes a
command and returns its standard output, which is a bit shorter if we assume
that the program will exit normally:

n = process.read("find ~/Music -type f | wc -l")

n = int_of_string(string.trim(n))

print("We have #{n} files in the library.")

Finally, the variant process.read.lines returns the list of all lines printed by
the process on the standard output. For instance, the command

find ~/Music -type f

will list all files in the ~/Music directory. We can use this to play all files in this
directory as follows:

l = process.read.lines("find ~/Music -type f")

l = list.shuffle(l)

print("We are going to play #{list.length(l)} files.")

s = playlist.list(l)

output(s)

Here, l contains the list of all our files in the ~/Music directory. We use
list.shuffle to put it in a random order, print its length (obtained with
list.length) and finally pass it to the playlist.list operator which will play
all the files.

Security. As usual in the modern world, extra care should be taken when passing
data from external users to applications, in order to mitigate the possibility of
executing malicious code. This is typically the case if we use an external script
in order to validate credentials for input.harbor. In such situations, one should
always apply the function string.quote to the users’ data, in order to remove the
possibility that some parts of it are interpreted as bash commands. For instance,

def auth(login)

process.test("./harbor-auth \

#{string.quote(login.user)} #{string.quote(login.password)}")

end

s = input.harbor("live", auth=auth)

Following this practice should make your script pretty secure, but there is no way
to be 100% sure that a corner case was not missed. In order to further improve
security, Liquidsoap provides the possibility to sandbox processes, which means
running them in a special environment which checks whether the directories
the program reads from and writes to are allowed ones, whether it is allowed

6.8. INTERACTING WITH OTHER PROGRAMS 171

to use the network, and so on. In order to use this, one should set the sandbox

configuration key as follows:

settings.sandbox := true

When this is done, every execution of a program by process.run (or derived
functions) will be done using the sandboxing program bwrap (which can be
changed with the configuration key sandbox.binary). The following configura-
tion keys can then be set in order to change the permissions the run programs
have by default:

• sandbox.ro: which directories the programs can read from (the root direc-
tory by default),

• sandbox.rw: which directories the programs can read from and write to
(the home directory and the temporary directory by default),

• sandbox.network: whether programs have the right to use network (this
it the case by default),

• sandbox.shell: whether programs have the right to run commands inside
shell (this it the case by default).

The following arguments of the function process.run, can also be set for chang-
ing these values for a particular program instead of using the default settings as
specified above:

• rodirs: which directories the program can read from (defaults to the value
specified in sandbox.ro configuration key),

• rwdirs: which directories the program can read from and write to (defaults
to the value specified in sandbox.rw configuration key),

• network: whether program has the right to use network (defaults to the
value specified in sandbox.network configuration key).

For instance, suppose that the program harbor-authwe are using to authenticate
harbor clients uses files in the directory /users. We can ensure that it only reads
from there with

settings.sandbox := true

def auth(login)

p = process.run(rodirs=["/users"], rwdirs=[], network=false,

"./harbor-auth \

#{string.quote(login.user)} #{string.quote(login.password)}")

p.status == "exit" and p.status.code == 0

end

s = input.harbor("live", auth=auth)

In this way, even if a malicious user manages to use our authentication script to
take control of our machine, he will not be able to access more than the list of
users.

172 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

JSON. In order to exchange data with other programs (via process.run, files,
and so on), the preferred way for formatting data is json , which is a standard
way of representing structured data (consisting of records, arrays, etc.) and is
supported by most modern languages.

Converting to JSON. You can obtain the json representation of any Liquidsoap
value with the function json.stringify, which takes a value as argument and
returns its json representation. For instance, here is the way some Liquidsoap
values are converted to json:

Liquidsoap () true "abc" 23 2.4

JSON [] true "abc" 23 2.4

Liquidsoap [2, 3, 4] (12, 1.2)

JSON [2, 3, 4] [12, 1.2]

Liquidsoap [("f", 1), ("b", 4)] {x=1, y="a"}

JSON [["f", 1], ["b", 4]] {"x": 1, "y": "a"}

The default output of json.stringify is designed to be pleasant to read for
humans. If you want to have a small representation (without useless spaces and
newlines), you can pass the argument compact=true to the function.

It is possible to create abstract json objects using the function json() on which
we will be able to incrementally add fields using the add method (or remove
using the remove method). For instance,

j = json()

j.add("title", "my song")

j.add("artist", "myself")

print(json.stringify(j))

will print

{"artist": "myself", "title": "my song"}

Parsing JSON data. Conversely, json values can be converted to Liquidsoap
using the syntax

let json.parse x = json

6.8. INTERACTING WITH OTHER PROGRAMS 173

which parses the string json as json data and assigns the result to x: this resulting
value will be a record whose fields correspond to the json data.

For instance, suppose that we have a script next-song-json which returns, in
json format, the next song to be played along with cue in and out points and
fade in and out durations. A typical output of the script would be of the form

{

"file": "test.mp3",

"cue_in": 1.1,

"cue_out": 239.0,

"fade_in": 2.5,

"fade_out": 3.2

}

The following script uses request.dynamic which will call a function next_song

in order to get the next song to be played. This function

• uses process.read to obtain the output of the external script
next-song-json,

• uses let json.parse to parse this json as a record (whose fields will be
file, cue_in, cue_out, fade_in and fade_out),

• extracts the parameters of the song from the returned record,
• returns a request from the song annotated with cue and fade parameters.

The cue and fade parameters are then applied by using the operators cue_cut,
fade.in and fade.out because we annotated the parameters with the metadata
expected by those operators.

def next_song()

json = process.read("./next-song-json")

let json.parse song = json

song = "annotate:\

liq_cue_in=#{song.cue_in},liq_cue_out=#{song.cue_out},\

liq_fade_in=#{song.fade_in},liq_fade_out=#{song.fade_out}:\

#{song.file}"

log.important("Next song is #{song}")

request.create(song)

end

s = request.dynamic(next_song)

s = fade.out(fade.in(cue_cut(s)))

output(s)

Watching files. A simple, although not very robust, way of communicating
data with external programs is through files. For instance, suppose that we
have a webserver on which users can make requests. When this is the case, our
server writes the name of the file to play in a file to-play. In the following script,

174 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

whenever the file to-play is modified, we push it in a queue so that it is played
online, and we play the default source if there is no request:

queue = request.queue()

radio = fallback(track_sensitive=false, [queue, default])

def on_request()

fname = string.trim(file.contents("to-play"))

log.important("Playing #{fname}.")

queue.push.uri(fname)

end

file.write(data=string(time()), "to-play")

file.watch("to-play", on_request)

output(radio)

In order to do so, we use the file.watch function, which registers a function to
be called whenever a file changes: here, when the file to-play is modified, the
function on_request is called, which reads the contents of the file and pushes a
corresponding request on the queue. Of course, we could easily be combined
this with the techniques of previous paragraph and store the file in json format
to add additional information about the request.

If at some point you do not need to watch the file for changes anymore, the
(unit) value returned by file.watch has a method unwatch which can be called
to stop calling the function when the file is modified. For instance,

w = file.watch("to-play", on_request)

...

w.unwatch()

As another example, we could store the volume to be applied to our radio stream
in a file named volume as follows:

volume = ref(1.)

radio = amplify(volume, radio)

def update()

v = string.trim(file.contents("volume"))

volume := float_of_string(v)

log.important("New volume is #{volume()}.")

end

file.watch("volume", update)

although this is more easily achieved using the file.getter.float function, as
explained in section 6.5.

The telnet server. A common way of interacting between Liquidsoap and
another program is through the telnet server, which can be used to by external
programs to run commands in the scripts.

6.8. INTERACTING WITH OTHER PROGRAMS 175

Configuration. In order to start the server, one should begin by calling the
server.telnet function:

server.telnet()

Related configuration keys can be set:

• settings.server.telnet.bind_addr: the ip from which the telnet server
accepts commands ("127.0.0.1" by default, which means that only the
local host can connect to the server, for security reasons),

• settings.server.telnet.port: the port on which the server is listening
(1234 by default),

• settings.server.timeout: timeout for read and write operations (30 sec-
onds by default), if nothing happens for this duration the client is discon-
nected (setting this to a negative value disables timeout).

A running example. In order to illustrate the use of the telnet server we will be
considering the following simple script, which implements a simple radio:

server.telnet()

q = request.queue(id="reqs")

p = playlist(id="main", "~/Music")

radio = fallback(track_sensitive=false, [q, p])

output(radio)

You can see that we have enabled telnet support and that our radio consists of a
request queue named reqs with a fallback on a playlist named main.

Executing commands. We can connect to the server using the telnet program
with

telnet localhost 1234

Here, localhostmeans that we want to connect on the local machine and 1234 is
the default port for the server. Once this is done, we can begin typing commands
and the server will answer to us. For instance, we can know the list of available
commands by typing

help

to which the server will answer with

Available commands:

| exit

| help [<command>]

| list

| main.reload

| main.skip

| main.uri [<uri>]

176 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

| quit

| reqs.push <uri>

| reqs.queue

| reqs.skip

| request.alive

| request.all

| request.metadata <rid>

| request.on_air

| request.resolving

| request.trace <rid>

| uptime

| var.get <variable>

| var.list

| var.set <name> = <value>

| version

Type "help <command>" for more information.

END

The answer to a command can be arbitrary text, but always ends with a line
containing only END, which is convenient when automating communications
through telnet.

We have already seen that commands can also be sent with shell one-liners such
as

echo reqs.skip | telnet localhost 1234

which will launch the reqs.skip command on the telnet server.

If you like web interfaces more than old shell programs, you can add

server.harbor()

in your script, and the telnet server will be available on your browser at the url

http://localhost:8000/telnet

(the port and the url can be configured by passing port and uri parameters to
the function server.harbor). If you point your browser at this page, you should
see a web emulation of the telnet server which looks like this:

6.8. INTERACTING WITH OTHER PROGRAMS 177

Generic commands. Let us present the generic commands listed above, in the
answer to the help command, i.e. the commands which will always be present
in the telnet server of a script:

• exit ends the telnet communication,

• help prints the list of available commands, or prints detailed help about a
command if called with a command name as argument:

help version

Usage: version

Display liquidsoap version.

END

(the “usage” line explains how the command should be used, and which
arguments are expected),

• list details the available operators, for instance, in our example, the
answer would be

reqs : request.dynamic.list

main : request.dynamic.list

switch_65380 : switch

pulse_out(liquidsoap:) : output.pulseaudio

indicating that we have two request.dynamic.list operators name reqs

and main, a switch and an output.pulseaudio whose name have been
automatically generated,

• quit is the same as exit,

178 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

• uptime shows for how long the script has been running,

• version displays the Liquidsoap version.

Some commands can be used to inspect the requests manipulated by Liquidsoap.
Those are identified by their request identifier, or rid, which is a number uniquely
identifying the request.

• request.alive lists all the requests which are in use, i.e. being played or
waiting to be played,

• request.all lists all the requests used up to now,
• request.metadata can be used to list themetadata associated to a particular
request,

• request.on_air lists all the requests which are being played,
• request.resolving lists all the requests which are being resolved, such as
distant files being downloaded,

• request.trace shows the log associated to a particular request, which can
be useful to know information about it, such as the reason why it failed
to be resolved.

In a typical telnet session, we could ask for the alive and known requests:

request.alive

12 11

END

request.all

12 11 10 9

END

ask for the metadata of a particular request:

request.metadata 12

rid="12"

on_air="2021/05/20 17:04:06"

status="playing"

initial_uri="/path/to/file.mp3"

source="main"

temporary="false"

filename="/path/to/file.mp3"

title="My song"

artist="The artist"

kind="{audio=pcm(stereo),video=none,midi=none}"

END

trace a valid request:

request.trace 12

[2021/05/20 17:04:06] Pushed ["/path/to/file.mp3";...].

6.8. INTERACTING WITH OTHER PROGRAMS 179

[2021/05/20 17:04:06] Currently on air.

END

push an invalid request and trace it:

reqs.push non-existent-file

13

END

request.trace 13

[2021/05/20 17:05:16] Pushed ["non-existent-file";...].

[2021/05/20 17:05:16] Nonexistent file or ill-formed URI!

[2021/05/20 17:05:16] Every possibility failed!

[2021/05/20 17:05:16] Request finished.

END

Some commands are specific to interactive variables and have been detailed in
section 6.5:

• var.get provides the contents of an interactive variable,
• var.list lists all the defined interactive variables,
• var.set changes the value of an interactive variable.

Operators’ commands. Above are presented the commands which are available
in the telnet server of every script. But the operators used in a particular script
also register additional commands. This is for instance the case for the playlist
operator, which has registered the following three commands:

• main.reload reloads the playlist,
• main.skip skips the current song and goes to the next track,
• main.uri can be used to retrieve or change the location of the playlist.

Note that the commands are prefixed with main, which is the id of the playlist,
so that we know which operator we are referring to (no prefix is added if no id

is provided). The request.queue operator also has registered three commands

• reqs.push allows adding a new request in the queue, for instance

reqs.push ~/Music/my file.mp3

27

END

where the server returns the corresponding rid (27 in our example),

• reqs.queue displays the list of requests in the queue,

• reqs.skip skips the current request in the queue.

Registering commands. You can register your own telnet commands with the
server.register function. This function takes as argument the name of the
command, and a function which will be called when the command is issued (the

180 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

function receives as argument the argument on the command on telnet, and
returns the message that will be printed after the command has been executed).
Optional arguments labeled usage and description allow describing the way the
command is intended to be used and what it does, and are used when displaying
help.

For instance, suppose that we have three sources rap, rock and techno, and that
we want to be able to switch between them whenever we want by typing the
command “select rap”, “select rock” or “select techno” on the telnet. This
can be achieved as follows:

server.telnet()

selected = ref("techno")

def on_select(x)

selected := x

"Source #{x} selected."

end

server.register(usage="select <rap/rock/techno>",

description="Switch between our music sources.",

"select", on_select)

radio = switch(track_sensitive=false, [

({selected() == "rap"}, rap),

({selected() == "rock"}, rock),

({selected() == "techno"}, techno)

])

output(radio)

After enabling the telnet, we declare a reference selected to a string describing
the currently selected source (it can be "rap", "rock" or "techno", and is initially
the last one). We then define the callback function on_select, which changes
the value of selected according to its argument. We then use server.register

to have on_select be called when the select command is typed on the telnet.
Finally, we define our radio with a switch which plays the rap source when the
value of selected is "rap" and similarly for other sources. We can then change
the played source to rock by typing the telnet command

select rock

to which the script will answer

Source rock selected.

END

As another example, the script

server.telnet()

radio = insert_metadata(radio)

def on_title(t)

6.8. INTERACTING WITH OTHER PROGRAMS 181

radio.insert_metadata([("title", t)])

"Title set to #{t}."

end

server.register(usage="title <new title>",

description="Set the title of the radio.",

"title", on_title)

adds a command so that we can set the title of our radio stream by issuing a
command of the form

title My new title

on the telnet server.

Interaction with other programs. The telnet server can be connected to using the
usual means (TCP sockets), in almost every programming language. It is also
possible to use commands such as telnet in order to send commands over the
commandline. For instance:

echo select rock | telnet localhost 1234

When the web interface for the telnet server is enabled with server.harbor(),
it is also possible to post the command at the url of the server (by default
http://localhost:8000/telnet1). You should have a look at the implementation
of server.harbor in the standard library if you want to customize this (e.g. in
order to support post): it is based on harbor.http.register, which is described
next.

Running commands from scripts. It is also possible to run a server command
from within a Liquidsoap script itself by using server.execute function such as

server.execute("title My new title")

or

server.execute("title", "My new title")

if you want to separate the command from the argument. This is working even
if the telnet interface for the server is not enabled.

Web-based interactions. A more and more common way of interacting with
other programs and services nowadays is through the web, and Liquidsoap has
support for this. Not only can we easily fetch webpages and distant files, but we
also feature a builtin web server, called harbor, which can be handy in order to
expose information on webpages or implement web services.

1http://localhost:8000/telnet

http://localhost:8000/telnet

182 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

Making HTTP requests to other sites. We recall that Liquidsoap has integrated
support distant files, in particular through the http and https protocols. This
means that you can load a playlist on some web server by writing something
like

radio = playlist("http://www.some-server.com/playlist")

and the playlist can itself consist in a list of url of files to be played.

It might also happen that you need to retrieve some distant file over http and
https. This can be achieved with the functions http.get which takes a url as
argument and returns the contents of the served page as a string. For instance,
you can display the changelog for Liquidsoap with

c = http.get(

"https://raw.github.com/savonet/liquidsoap/master/CHANGES.md")

print("Here are the latest changes in Liquidsoap:\n\n" ^ c)

The value returned by the function http.get also features the following fields,
which can be used to obtain more information about the request:

• headers is the list of headers and their value,
• protocol_version is the version of the http protocol we used (typically
"HTTP/1.1")

• status_code is a standard code for the http protocol indicating the status
of the answer (for instance, 200 means that everything went on fine and
404 means that the page was not found),

• status_message is a textual description of the status code.

When making requests, you should always check the status code in order to
ensure that everything went on fine. A value above 400 means that an error
occurred:

h = http.get("http://www.google.fr/xxx")

if h.status_code < 400 then

print("Contents of the webpage: #{h}")

else

print("An error occured: #{h.status_code} (#{h.status_message})")

end

Finally, the parameter headers of http.get can be used to pass extra headers to
the request and the parameter timeout controls how long we can take at most
in order to fetch the page (default is 10 seconds).

The http protocol actually defines two main ways of retrieving webpages: post,
which is handled by the function http.get presented above, and post, which
is handled by the function http.post. The post method is generally used for
forms and takes an argument named data, which contains the data we want to
pass as the contents of the form. The way this data is encoded is application-

6.8. INTERACTING WITH OTHER PROGRAMS 183

dependent and should be specified using the Content-Type header. For instance,
suppose that we have a script update_metadata.php that we can call to update
the metadata on our website. The script

radio = playlist("~/Music")

def handle_metadata(m)

h = http.post(

headers=[("Content-Type", "application/json; charset=UTF-8")],

data=metadata.json.stringify(m),

"http://our.website.com/update_metadata.php")

if h.status_code >= 400 then

log.important("Failed to update metadata.")

end

end

radio.on_track(handle_metadata)

calls it whenever there is a new track, with the metadata of the track encoded in
json as data.

Additional useful http functions are http.head to only retrieve the headers of
the corresponding post request, http.put and http.delete which respectively
perform put and delete http requests in order to upload or delete a distant
file.

Serving static webpages. Liquidsoap embeds a webserver which makes it possible
for it to serve webpages. The most basic way of doing so is by making a directory
available on the server using the harbor.http.static function. For instance, the
line

harbor.http.static(port=8000, path="/music", browse=true, "~/Music")

will make all the files of the ~/Music directory available at the path /music of
the server, which will be made available on the port 8000 of the local host. This
means that a file

~/Music/dir/file.mp3

will be available at the url

http://localhost:8000/music/dir/file.mp3

The option browse=true makes it so that, for a directory, the list of files it con-
tains is displayed. If the directory contains html pages, their contents will be
displayed, so that this function can be handy to serve static pages. For instance,
if we have a directory www containing a html file test.html, we can register it
with

harbor.http.static(path="/pages", "www")

and browse it at

184 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

http://localhost:8000/pages/test.html

When serving files in this way, it is important that the server knows the kind
of file it is serving. This is automatically detected by default, but it can also be
specified manually with the content_type argument of harbor.http.static.

Serving dynamic webpages. The full power of the harbor server can be used
through the harbor.http.register.simple function, which allows serving http
requests with dynamically generated answers. It takes as arguments

• port: the port of the server (8000 by default),
• method: the kind of request we want to handle ("GET", "POST", etc., default
being "GET"),

• the path we want to serve,
• the serving function, aka the handler for requests.

This last handler function generates the answer (typically, a webpage) for a
request. The argument of the handler is a record describing the request. Its main
fields are

• headers: a list of headers for the request,
• data: the input data (for post requests),
• method: the method used to issued the request ("GET", "POST", etc.),
• path: the path on which the request was made,
• query: the arguments passed on the url.

For instance, if we go to http://localhost:8000/test?a=2&b=3, the path will
be "/test" and the query will be the list [("a","2"),("b","3")]. The handler
returns a string which is the http answer (to be precise, this is a string getter
because the answer might be very long and thus split in parts). This answer
has to follow a particular format specified by the http protocol, and is usually
generated by http.response which takes as argument the protocol (HTTP/1.1
by default), the status code (200 by default), the headers (none by default), the
content type and the data of the answer, and properly formats it. For instance,
in the script

def answer(_)

http.response(content_type="text/plain", data="It works!")

end

harbor.http.register.simple("/test", answer)

we register the function answer on the path /test which, when called, simply
prints It works! as answer. You can test it by browsing the url

http://localhost:8000/test

and you will see the message. We can also easily provide an answer formatted
in html:

6.8. INTERACTING WITH OTHER PROGRAMS 185

def answer(_)

http.response(content_type="text/html",

data="<html><body><h1>It works!</h1></body></html>")

end

harbor.http.register.simple("/test", answer)

The variant harbor.http.register.simple.regexp allows registering at once a
handler on every matching a regular expression. For instance, in the following
example, we register a handler on every path starting with /test:

def answer(request)

data = "We are serving #{request.path}."

http.response(content_type="text/plain", data=data)

end

harbor.http.register.simple.regexp(regexp("/test.*"), answer)

so that if we go to

http://localhost:8000/test123

we will see the message

We are serving /test123.

In practice, the handler will often check the path and provide an answer depend-
ing on it.

Skipping tracks. What makes this mechanism incredibly powerful is the fact
that the serving function is an arbitrary function, which can itself perform any
sequence of operations in the script. For instance, we have already seen that we
can implement a service to skip the current track on the source s with

def skipper(_)

s.skip()

http.response(data="The current song was skipped!")

end

harbor.http.register.simple(port=8000, "/skip", skipper)

Whenever someone connects to the url

http://localhost:8000/skip

the skipper function is called, and thus s.skip() is executed before returning a
message.

Exposing metadata. The contents we serve might also depend on values in the
script. For instance, the following script shows the metadata of our radio source
encoded in json:

186 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

last_metadata = ref([])

radio.on_track(fun (m) -> last_metadata := m)

def show_metadata(_)

http.response(content_type="application/json; charset=UTF-8",

data=metadata.json.stringify(last_metadata()))

end

harbor.http.register.simple("/metadata", show_metadata)

We begin by declaring a reference last_metadata which contains the metadata
for the last played track. Then, we register a callback so that whenever a new
track occurs in radio we change the value of last_metadata according to its
metadata. And finally, we register at the path /metadata a function which returns
a json encoding of the last metadata we have seen. As usual, the metadata can
be retrieved by browsing at

http://localhost:8000/metadata

which will provide an answer of the following form:

{

"genre": "Soul",

"album": "The Complete Stax-Volt Singles: 1959-1968 (Disc 8)",

"artist": "Astors",

"title": "Daddy Didn't Tell Me"

}

This could then used by an ajax backends to fetch the current metadata of our
radio.

Enqueuing tracks. We can also make use of the arguments of the serving function.
For instance, we want that, whenever we go to an url of the form

http://localhost:8000/play?file=test.mp3&title=La%20bohème

we play the file test.mp3 and specify that the title should be “La bohème”. Here,
the “real” part of the url ends with /play, and the part after the question mark (?)
should be considered as arguments, separated by ampersand (&) and passed in
the form name=value. It should also be noted that an url uses a particular,
standardized, coding, where %20 represents a space. This can be achieved as
follows:

default = playlist("~/Music")

queue = request.queue()

radio = fallback(track_sensitive=false, [queue, default])

def play(request)

fname = request.query["file"]

title = request.query["title"]

log.important("Serving file #{fname} whose title is #{title}.")

6.8. INTERACTING WITH OTHER PROGRAMS 187

if file.exists(fname) then

queue.push.uri("annotate:title=#{string.quote(title)}:#{fname}")

http.response(data="Request pushed.")

else

http.response(status_code=404, data="Invalid file.")

end

end

harbor.http.register.simple("/play", play)

We begin by declaring that our radio consists of a requests queue with a fallback
on a default playlist. We then register the function play on the path /play. We
can then obtain the arguments of the query as the query field of the request
which, in the case of the above url will be the following list of arguments:

[("file", "test.mp3), ("title", "La bohème")]

Finally, the function pushes the corresponding request into the queue and an-
swers that this has been performed.

Here, we validate the request by ensuring that the corresponding file exists.
Generally, you should always validate data coming from users (even if you
trust them, you never know), especially when passing data in requests without
string.quote as it is the case here for fname.

Setting metadata. As a variant, we can easily make a script which, when an url
of the form

http://localhost:8000/play?artist=Charles%20Aznavour&title=La%20bohème

sets the current metadata of the radio source accordingly (the artist will be
“Charles Aznavour” and the title “La bohème”):

radio = insert_metadata(radio)

def set_metadata(request)

log.important("Inserting metadata: #{request.query}")

radio.insert_metadata(request.query)

http.response(data="Done.")

end

harbor.http.register.simple("/set_metadata", set_metadata)

This kind of mechanism can be handy when using inputs such as websockets,
which do not natively support passing metadata.

Switching between sources. In section 6.8, we have seen how to switch between
a rock, a rap and a techno source using telnet commands. Of course, this can
also be achieved with a web service as follows:

selected = ref("techno")

def on_select(request)

188 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

selected := request.query["source"]

http.response(data="Source #{selected()} selected.")

end

harbor.http.register.simple("/select", on_select)

radio = switch(track_sensitive=false, [

({selected() == "rap"}, rap),

({selected() == "rock"}, rock),

({selected() == "techno"}, techno)

])

Using this script, we can switch to the rap source by going to the url

http://localhost:8000/select?source=rap

Launching jingles. Suppose that you want to be able to easily launch jingles
during your show, with buttons which you could press at any time to launch a
particular jingle. More precisely, we are interested here in playing a file among
jingle1.mp3, jingle2.mp3 and jingle3.mp3. In order to do this, we have prepared
the following jingle.html file:

<html>

<head>

<script>function play(n) { fetch("?number="+n) }</script>

</head>

<body>

<input type="button" value="Jingle 1" onclick="play(1)">

<input type="button" value="Jingle 2" onclick="play(2)">

<input type="button" value="Jingle 3" onclick="play(3)">

</body>

</html>

Suppose that we serve this page at the url

http://localhost:8000/jingles

When we go there, we see three buttons like this

Moreover, if we click on the button “Jingle 3”, the page will fetch the url

http://localhost:8000/jingles?number=3

and similarly for other buttons. Now, we can achieve what we want with the
following script:

jingle_queue = request.queue()

radio = add(normalize=false, [jingle_queue, radio])

def jingles(req)

6.8. INTERACTING WITH OTHER PROGRAMS 189

n = req.query["number"]

if n != "" and string.is_int(n) then

log.important("Playing jingle #{n}.")

jingle_queue.push(request.create("jingle#{n}.mp3"))

http.response(data="Playing jingle.")

else

http.response(content_type="text/html",

data=file.contents("jingles.html"))

end

end

harbor.http.register.simple("/jingles", jingles)

Here, we suppose that we already have a radio source. We begin by adding a
queue jingle_queue on top of the radio. We then serve the path /jingles with
function jingles: if there is a number argument, we play the file jingleN.mp3

where N is the number passed as argument, otherwise we simply display the
page jingles.html.

Since we use a request queue, we cannot play two jingles at once: if we press
multiple buttons at once, the jingles will be played sequentially. If instead
of jingles you have some sound effects (for instance, laughter, clapping, etc.),
you might want to play the files immediately. This can be achieved by using
request.player instead of request.queue to play the jingles (and the method to
play them is then play instead of push).

Low-level API. An alternative api for handling requests, more in the
node/express style, is provided by the function harbor.http.register (note
that there is no .simple in the end). The arguments are pretty similar to
those of harbor.http.register.simple excepting that the handler now takes to
arguments:

• the request as before, and
• a response record whose fields can be called to build the answer.

A typical handler will first call the field content_type of the response to set the
content type and then make a calls to the field data in order to output data:

def answer(request, response)

response.content_type("text/plain; charset=UTF-8")

response.data("It works!")

end

harbor.http.register("/test", answer)

Limitations and configuration. When using Liquidsoap’s internal http server
harbor, you should be warned that it is not meant to be used under heavy load.
Therefore, it should not be exposed to your users/listeners if you expect many

190 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

of them. In this case, you should use it as a backend/middle-end and have some
kind of caching between harbor and the final user.

Because of this, extra-care should be taken when exposing harbor. An external
firewall should preferably be used, but the following configuration options can
help:

• settings.harbor.bind_addrs: list of ip addresses on which harbor should
listen (default is ["0.0.0.0"] which means any address),

• settings.harbor.max_connections: maximum number of connections per
port (default is 2 in order to mitigate the possibility of DDoS attacks),

• settings.harbor.ssl.certificate and settings.harbor.ssl.private_key
should also be set if you want to use https connections.

6.9 Monitoring and testing

If you have read this (long) chapter up to there, you should now have all the
tools to write the script for the radio you have always dreamed of. Now it is
time to test this script to ensure that it performs as expected. We give here some
functions that you can use to check that your script is running correctly.

Metrics. In order to ensure that your script is running alright at all times and
perform forensic investigation in case of a problem, it is useful to have metrics

about the script: these are data, often numeric data, which indicate relevant
information about the stream production.

Useful indicators. The power of the stream can be obtained with the rms operator,
which adds to a source an rms method which returns the current rms. Here,
rms stands for root mean square and is a decent way of measuring the power of
the sound. This value is a float between 0 (silent sound) and 1 (maximally loud
sound). It can be converted to decibels, which is a more usual way of measuring
power using the dB_of_lin function. For instance, the script

s = rms(s)

def print_rms()

r = dB_of_lin(s.rms())

log.important("RMS: #{r} dB")

end

thread.run(every=1., print_rms)

will print the power in decibels of the source s every second.

Another measurement for loudness of sound is lufs (for Loudness Unit Full Scale).
It is often more relevant than rms because it takes in account the way human
ears perceive the sound (which is not homogeneous depending on the frequency
of the sound). It can be obtained quite in a similar way:

6.9. MONITORING AND TESTING 191

s = lufs(s)

thread.run(every=1., {print("LUFS #{s.lufs()}")})

The current bpm (number of beats per minute, otherwise known as tempo) of a
musical stream can be computed in a similar way:

s = playlist("~/Music")

s = bpm(s)

thread.run(every=1., {print("BPM: #{s.bpm()}")})

output(s)

We can also detect whether the stream has sound or is streaming silence the
using blank.detect operator:

silent = ref(false)

s = blank.detect(on_noise={silent := false}, {silent := true}, s)

thread.run(every=1., {log.important("Source is silent: #{silent()}")})

Other useful information for a particular source s can be obtained using the
following methods:

• s.is_up: whether Liquidsoap has required the source to get ready for
streaming,

• s.is_ready: whether the source has something to stream,
• s.time: how much time (in seconds) the source has streamed.

Exposing metrics. Once we have decided upon which metrics we want to expose,
we need to make them available to external tools. For instance, suppose that
we have a source s and that we want to export readyness, rms and lufs as
indicators. We thus first define a function which returns the metrics of interest
as a record:

s = rms(s)

rms = s.rms

s = lufs(s)

lufs = s.lufs

def metrics()

{ready = s.is_ready(),

rms = dB_of_lin(rms()),

lufs = lufs()}

end

We can then export our metrics in a file, which can be performed with

def save_metrics()

metrics = {rms = dB_of_lin(rms()), lufs = lufs()}

data = json.stringify(metrics)

file.write(data=data, "metrics.json")

192 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

end

thread.run(every=1., save_metrics)

Alternatively, metrics can be exposed using the webserver with

def metrics_page(_)

data = json.stringify(metrics())

http.response(content_type="application/json", data=data)

end

harbor.http.register.simple("/metrics", metrics_page)

Prometheus. If you need a more robust way of storing and exploring metrics,
Liquidsoap has support for the Prometheus1 tool, which is dedicated to this task.
Suppose that we have two sources named radio1 and radio2 for which we want
to export the rms. We first need to declare that we want to use Prometheus and
declare the port we want to run the server on:

settings.prometheus.server := true

settings.prometheus.server.port := 9090

We are then going to declare a new kind of metric (here the rms) using the
function prometheus.gauge function:

rms_metric = prometheus.gauge(

labels=["source"], help="RMS power", "liquidsoap_rms")

The type of prometheus.gauge is

(help : string, labels : [string], string) -> (label_values : [string])

-> (float) -> unit↪→

this means that

• we first need to apply it to help, labels and the name of the gauge in order
to create a new kind of gauge (here, the “rms gauge”),

• we can apply the resulting function to label_values in order to create an
instance of this gauge (we would typically do that once for every source
of which we want to record the rms),

• we finally obtain a function which takes a float as argument and can be
used to set the value of the gauge.

In our case, we create two instances of the rms gauge, one for each source:

set_radio1_rms_metric = rms_metric(label_values=["radio1"])

set_radio2_rms_metric = rms_metric(label_values=["radio2"])

Finally, we set the value of the gauges at regular intervals:

1https://prometheus.io/

https://prometheus.io/

6.9. MONITORING AND TESTING 193

radio1 = rms(radio1)

radio2 = rms(radio2)

thread.run(every=1., {set_radio1_rms_metric(radio1.rms())})

thread.run(every=1., {set_radio1_rms_metric(radio2.rms())})

We also provide two variants of the function prometheus.gauge:

• prometheus.counterwhich increases a counter instead of setting the value
of the gauge,

• prometheus.summay which records an observation.

Additional we provide the function prometheus.latency which can be used to
monitor the internal latency of a given source.

On top of prometheus, Grafana1 offers a nice web-based interface. The reader
interested in those technologies is advised to have a look at the srt2hls2 project
which builds on Liquidsoap and those technologies.

Testing scripts. We provide here a few tips in order to help with the elaboration
and the testing of scripts.

Logging. A first obvious remark is that you will not be able to understand the
problems of your radio if you don’t know what’s going on, and a good way
to obtain information is to read the logs, and write meaningful information in
those. By default, the logs are printed on the standard output when you run a
script. You can also have them written to a file with

log.file := false

log.file.path := "/tmp/liquidsoap.log"

where the second line specifies the file those should be written to. A typical log
entry looks like this:

2021/04/26 09:18:46 [request.dynamic_65:3] Prepared "test.mp3" (RID 0).

It states that on the given day and time, an operator request.dynamic (the suffix
_65 was added in case there are multiple operators, to distinguish between
them) has issued a message at level 3 (important) and the message is “Prepared
"test.mp3" (RID 0).”, which means here that a request to the file test.mp3 is
about to be played and has rid 0.

We recall that there are various levels of importance for information:

1. a critical message (the program might crash after that),
2. a severe message (something that might affect the program in a deep way),
3. an important message,
4. an information, and

1https://grafana.com/
2https://github.com/mbugeia/srt2hls

https://grafana.com/
https://github.com/mbugeia/srt2hls

194 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

5. a debug message (which can generally be ignored).

By default, only messages with importance up to 3 are displayed, and this can
be changed by setting the log.level configuration:

log.level := 5

You can log at various levels using the functions log.critical, log.severe,
log.important, log.info and log.debug. Those functions take an optional argu-
ment label which will be used as “operator name” in the log. For instance,

log.severe(label="testing", "This is my message to you.")

will add the following line in the logs:

2021/04/26 09:28:18 [testing:2] This is my message to you.

You should try to use priorities meaningfully: you will soon that at a high level
such as 5 (debug) you get quite precise information, but the drawback is that you
often actually get too much information and it is difficult to find the important
one.

The telnet server (see section 6.8) can also be useful to obtain information such
as the song currently playing on a particular source. In particular, request.trace
can sometimes be used to understand why a particular request has failed to be
played (be it because there was an error in the path or a failure of the network. . .).

Generating sound. Apart from reading the logs, the way you are generally going
to test and debug your scripts is by using your ears. The simplest way to generate
sound is by having a few music files at hand that you know well. Another very
efficient way to generate easily recognizable sound is by generating sines, with
different frequencies for different events. Those can be generated with the sine

operator where the duration argument specifies the length of the track (infinite
by default) and the unlabeled argument specifies the frequency. For instance,
we can test the fallback operator as follows:

s1 = sine(duration=2., 880.)

s2 = sine(440.)

s = fallback([s1, s2])

output(s)

We have two sources: s1 is a high-pitched sine lasting for 2 seconds and s2 is an
infinite medium-pitched sine. We play the source s which is s1 with a fallback
on s2. If you listen to it, you will hear 2 seconds of high frequency sine and then
medium frequency sine:

6.9. MONITORING AND TESTING 195

frequency (Hz)

440
880

time (s)

This can be particularly handy if you want to test faded transitions in fallback
for instance. If you want to vary the kind of sound, the operators square and
saw take similar parameters as sine and produce different sound waves.

Sines can also be generated by special requests using the synth protocol, which
are of the following form:

synth:shape=sine,frequency=440,duration=1

The parameters for the request are the shape of the generated sound wave (which
can be sine, saw, square or blank, the default being sine), the frequency in Hz
(440 by default) and the duration in seconds (10 by default). For instance, we
can test request queues with the script

d = sine(440.)

q = request.queue()

s = fallback(track_sensitive=false, [q, d])

output(s)

thread.run(delay=2.,

{q.push(request.create("synth:frequency=880,duration=3"))})

Our main source s consists of a request queue q with a fallback on a mid-pitched
sine. After 2 seconds, we push on the request queue a high-pitch sine for 3
seconds. The frequency of what we hear will thus be

frequency (Hz)

440
880

time (s)

As a variant on sines, the metronome operator is sometimes useful: it generates
sine beeps at fixed rate (one every second, or 60 bpm, by default). This can be
used to measure time with your ears. For instance, in the above example, if you
replace the definition of the default source d by

d = metronome()

you will be able to observe that the request is played slightly after the second
second: this is because the request takes some time to be processed (we have to
synthesize the sine!).

Generating events. The previous example should have made it clear that the func-
tion thread.run is quite useful to generate “events” such as pushing in a queue.

196 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

Apart from the function to run thread.run takes two interesting arguments:

• delay: after how much time (in seconds) the function should be executed,
• every: how often (in seconds) the function should be called (by default,
the function is only called once).

Typically, suppose that we want to test a function handle_metadata which logs
the metadata of a source s. In order to test it, it can be boring to wait for the
next track. We can use the telnet in order to skip the current track of the source
by issuing a skip command. Even better, we can automate the skipping every 10
seconds with thread.run as follows:

s = playlist(id="s", "~/Music")

def handle_metadata(m)

print("Metadata:\n#{metadata.json.stringify(m)}")

end

s.on_metadata(handle_metadata)

thread.run(every=10., {s.skip()})

output(s)

The thread.run function can be used to execute a function regularly according
to the time of the computer. But, sometimes, it is more convenient to run the
function according to the internal time of a particular source, which can be
achieved with the source.run function: this function takes similar arguments
as thread.run, but also a source which should be taken as time reference. For
instance, suppose that you have a source s2 which is in a fallback and that you
want to skip it every 10 seconds when it is playing (and not skip when it is not
playing). This is achieved with

s2 = source.run(s2, every=10., {s2.skip()})

s = fallback([s1, s2])

output(s)

In this example, the internal time of the source s2 will not advance when it is
not selected by fallback, and the source will thus not be skipped when this is
the case.

Generating tracks. We have seen above that we can generate short tracks by
regularly skipping a source. Since this is quite useful to perform tests (transi-
tions, metadata handling, switching between sources, etc.), Liquidsoap provides
various operators in order to do so.

• skipper takes a source and skips the track at regular intervals, specified
by the argument every:

s = skipper(every=3., s)

(its implementation was essentially given above),

6.9. MONITORING AND TESTING 197

• chop takes a source and inserts track boundaries at regular intervals (spec-
ified by the argument every), with given metadata:

s = chop(every=3.,

metadata=[("artist", "Tester"), ("title", "Test")], s)

• accelerate plays a stream at faster speed by dropping or repeating frames,
the speeding factor being given by the ratio argument, which specifies
how many times we should speed up the stream:

s = accelerate(ratio=10., s)

Availability of sources. We sometimes want to simulate sources which are
not always available. For instance a live show which is only available
when a client connects to some input.habor, or a microphone capture with
blank.strip(input.alsa()) which is only available when the microphone is
switched on and someone is talking. Such a live source can be simulated
using the source.available operator which makes a source available or not
depending on a condition. For instance, in the script

live_on = ref(false)

live = source.available(sine(), live_on)

pl = playlist("~/Music")

radio = fallback(track_sensitive=false, [live, pl])

output(radio)

thread.run(delay=5., every=5., {live_on := not live_on()})

we have a live source live with a fallback to a playlist. We use a thread to make
the live source available only 5 seconds every 10 seconds:

frequency (Hz)
available

not available time (s)

Another way to achieve this is as follows:

live = source.available(sine(), {time.up() mod 10. >= 5.})

pl = playlist("~/Music")

radio = fallback(track_sensitive=false, [live, pl])

output(radio)

We use the time.up function, which counts the time in seconds since the begin-
ning of the execution of the script, with the mod 10. operator which forces the
counting to go back to 0 every 10 seconds: thus time.up() mod 10. is greater
than 5 for 5 seconds every 10 seconds, as desired.

The same tricks can be used to make a source silent for 5 seconds every 10
seconds, by amplifying with 1 or 0, in order to test blank.strip for instance:

198 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

def vol()

if time.up() mod 10. <= 5. then 1.

else 0. end

end

s = amplify(vol, playlist("~/Music"))

s = blank.strip(max_blank=2., s)

s = fallback(track_sensitive=false, [s, sine()])

output(s)

Simulating slow sources. In order to simulate sources which are slow to produce
a stream (because of a high cpu load, because of a network lag, etc.), one can
use the sleeper operator. It takes a delay operator which indicates how much
time it should take to produce 1 second of audio. For instance, in the script

s = sleeper(delay=1.1, sine())

output(s)

we simulate a sine which takes 1.1 second to produce 1 second audio. Because
the sound production is slower than realtime, you will soon hear glitches in the
audio, as well as see log messages such as

2020/07/29 11:13:05 [clock.pulseaudio:2] We must catchup 0.86 seconds!

which indicate that the script is too slow to produce the stream.

A typical way to address those issues is to perform buffering, with the buffer

operator, which will compute parts of the stream in advance in order not to
be affected by small slowdowns. Liquidsoap also offers the buffer.adptative

which will buffer and read the buffered data at low or high speed in order to
accommodate for delays. This can be clearly heard in the following example:

s = sleeper(delay=1.1, delay_random=.1, sine())

s = buffer.adaptative(s)

output(s)

You can hear that there are no audio glitches anymore, and that the frequency of
the sine lowers progressively, because the buffered sound is progressively read
more slowly in order to counter-balance the slow production of the sound.

Profiling. Liquidsoap features a builtin profiler , which records the time spent
in all “pure Liquidsoap” functions (i.e. excluding encoding of audio and video).
It can be enabled by calling profiler.enable() and then the profiling statistics
can be retrieved at any time with profiler.stats.string(). This string is of the
form

function self total calls

>= 0.089581489563 0.105806589127 1505

6.10. GOING FURTHER 199

not 0.0818383693695 0.0821418762207 4

if 0.0422260761261 0.40462064743 1515

f 0.0353031158447 0.233139276505 5802

+ 0.0283164978027 0.0377352237701 5796

next 0.0172562599182 0.0172562599182 2028

and consists in a table, where each line corresponds to a function, and the
columns indicate

• function: the function name,
• self: the time spent in the function, excluding the time spent in function
calls,

• total: the time spent in the function, including the time spent in function
calls,

• calls: the number of time the function was called.

For instance, in the script

rmsl = ref([])

s = rms(s)

s = source.run(s, every=0.01, {rmsl := list.add(s.rms(), rmsl())})

def mean_rms()

r = ref(0.)

list.iter(fun (x) -> r := r() + x, rmsl())

r() / float_of_int(list.length(rmsl()))

end

s = source.run(s, every=1., {print("RMS: #{mean_rms()}")})

profiler.enable()

s = source.run(s, every=10., {print("#{profiler.stats.string()}")})

we want to compute the average rms of a source s. We thus store the current
rms in a list rmsl every 0.01 second. Every second, we call a function mean_rms

which computes the average of the list of rmsl and print the result. Every 10
seconds, we print the profiling statistics. You will see that, because the list rmsl
grows over time, the script spends more and more time in the function + (in
order to compute the average) and in the function aux (which is an internal
function used to define list.iter).

6.10 Going further

A great way to learn more Liquidsoap tricks is to read the code of the standard
library. For instance, we have already mentioned that even advanced functions
are defined in there such as the playlist operator (in playlist.liq), interactive

200 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

values (in interactive.liq) or the normalize operator (in sound.liq). In this
section, we present some more advanced topics.

Operations on sources. If you have a look at the help of the function sine,
you will notice that it has quite a number of methods. In fact, all the functions
producing sources have those methods, some of which we have already seen,
and we detail those here.

Some methods provide information about the source.

• fallible: indicates whether a source may fail or not. For instance,

s = sine()

print(s.fallible)

will always print false because the sine source will never fail, but

s = input.harbor("test")

print(s.fallible)

will print true, because a input.harbor source may fail (when nobody is
connected to it).

• id: returns the identifier of the source.

• is_up: indicates whether the source has been prepared to start streaming.

• is_ready: indicates whether the source has something to stream (it should
always be true for infallible sources).

• remaining: returns an estimation of remaining time in the current track.

• time: returns the source’s time, i.e. for how long it has played.

Some methods allow registering functions called on some events.

• on_metadata: registers a function to be called on metadata (see section 6.3).
• on_track: registers a function to be called on new tracks (see section 6.3).
• on_shutdown: register a function to be called when the source shuts down.

Some methods allow performing actions on the source.

• seek: seek forward and returns the amount of time effectively seeked,
see also section 6.3. The argument is given in seconds relative to current
position, so that a negative value instructs seeking backward. Seeking
is not available on every source (e.g. we cannot seek on an input.http

source). The following script will loop in the first 10 seconds of the
source s:

s = playlist("~/Music")

thread.run(delay=10., every=10., {ignore(s.seek(-10.))})

output(s)

6.10. GOING FURTHER 201

Namely, after 10 seconds of playing, we seek 10 seconds backwards.

• skip: skip to the next track.

• shutdown: deactivate a source.

Clocks. In order to avoid synchronization issues, Liquidsoap maintains clocks,
which handle how the time is flowing for operators. Their behavior and use-
fulness is detailed in section 8.3, let us simply mention the two main causes of
discrepancies between time flow between operators.

1. When performing an output (e.g. with output.alsa, output.pulseaudio,
etc.) the speed at which the stream is generated is handled by the un-
derlying library (alsa, Pulseaudio, etc.). For this reason, all the different
libraries have their own clock. In a script such as

s = mksafe(playlist("~/Music"))

output.alsa(s)

output.pulseaudio(s)

the source s would be played at two different rates, which would result in
audio glitches. Liquidsoap detects this situation when the script is starting
and issues the error

A source cannot belong to two clocks (alsa[], pulseaudio[]).

which that you are trying to animate the source swith both the alsa clock
and the pulseaudio clock, which is forbidden.

2. Some operators need to change the time at which the source flows. This
is for instance the case of the stretch operator which changes the speed
at which a source is played or of the crossfade operator, which performs
transitions between tracks, and thus needs to compute the next track in
advance together with the end of a track. Such operators thus have their
own clock. For this reason, the script

s = mksafe(playlist("~/Music"))

output.alsa(s)

output.alsa(crossfade(s))

will not be accepted either and will raise the error

A source cannot belong to two clocks (alsa[], cross_65057[]).

indicating that you are trying to animate the source s both at the alsa

speed and at the crossfade speed (the number 65057 is there to give a
unique identifier for each crossfade operator).

If the speed of a source is not controlled by a particular library or operator, it
is attached to the main clock, which is the default one, and animated by the
computer’s cpu.

202 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

Buffers. In order to mediate between operators with two different clocks, one
can use a buffer, which will compute the stream of a source in advance, and will
thus be able to cope with small timeflow discrepancies. This can be achieved
using the buffer operator which takes, in addition to the source, the following
optional arguments:

• buffer: how much time to buffer in advance (1 second by default),
• max: how much time to buffer at most (10 seconds by default).

For instance, we can make the first script above work by adding a buffer as
follows:

s = mksafe(playlist("~/Music"))

output.alsa(fallible=true, buffer(s))

output.pulseaudio(s)

Note that when executing it the alsa output will be 1 second late compared to
the Pulseaudio one: this is the price to pay to live in peace with clocks.

A typical buffer can handle time discrepancies between clocks between 1 and 10
seconds. It will not be able to handle more than this, if one source is going really
too slow or too fast, because the buffer will be either empty or full. Alternatively,
you can use buffer.adaptative which tries to slow down the source if it is too
fast or speed it up if it is too slow. This means that the pitch of the source will
also be changed, but this is generally not audible if the time discrepancy evolves
slowly.

Deactivating clocks. Although we do not recommend it, in some situations it is
possible to solve clock conflicts by deactivating the clock of a particular operator,
often an input one. For instance, the script

s = input.alsa()

output.pulseaudio(s)

will not be accepted because the input and the output have different clocks,
which are respectively alsa and pulseaudio. As indicated above, the standard
way of dealing with this situation is by replacing the first line by

s = buffer(input.alsa())

However, there is another possibility: we can tell the input.alsa operator not
to use its own clock, by passing the argument clock_safe=false to it.

s = input.alsa(clock_safe=false)

In this case, the output is the only operator with its own clock and will thus be
responsible for the synchronization. This avoids using a buffer, and thus lowers
latencies, which can be nice in a situation as above where we have a microphone,
but this also means that we are likely to hear some glitches in the audio at some
point, because the input might not be in perfect sync with the output.

6.10. GOING FURTHER 203

Dealing with clocks. Apart from inserting buffers, you should almost never have
to explicitly deal with clocks. The language however provides functions in order
to manipulate them, in case this is needed. The function clock creates a new
clock and assigns it to a source given in argument. It takes a parameter sync
which indicates how the clocks synchronizes and can be either

• "cpu": the clock follows the one of the computer,
• "none": the clock goes as fast as possible (this is generally used for sources
such as input.alsa which take care of synchronization on their own),

• "auto": the clock follows the one of a source taking care of the synchro-
nization if there is one or to the one of the cpu by default (this is mostly
useful with clock.assign_new, see below).

Some other useful functions are

• clock.assign_new: creates a clock and assigns it to a list of sources (instead
of one as in the case of clock),

• clock.unify: ensures that a list of sources have the same clock,
• clock.status.seconds: returns the current time for all allocated clocks.

Decoupling latencies. The first reason you might want to explicitly assign clocks
is to precisely handle the various latencies that might occur in your setup,
and make sure that delay induced by an operator do not affect other operators.
Namely, two operators animated by two different clocks are entirely independent
and can be thought of as being run “in parallel”. For instance, suppose that you
have a script consisting of a microphone source, which is saved in a file for
backup purposes and streamed to Icecast for diffusion:

mic = input.alsa()

output.file(%mp3, "backup.mp3", mic)

output.icecast(%mp3, mount="radio", mic)

Here, all sources are animated by the same clock, which is the alsa one (be-
cause input.alsa is the only operator here which is able to take care of the
synchronization of the sources). If for some reason, the Icecast output is slow
(for instance, because of a network lag), it will slow down the alsa clock and thus
all the operators will lag. This means that we might lose some of the microphone
input, because we are not reading fast enough on it, and even the file output
will have holes. In order to prevent from this happening, we can put the Icecast
output in its own clock:

mic = input.alsa()

output.file(%mp3, "backup.mp3", mic)

output.icecast(%mp3, mount="radio", mksafe(clock(buffer(mic))))

In this way, the timing problems of Icecast will not affect the reading on the
microphone and the backup file will contain the whole emission for later replace,
even if the live transmission had problems. Note that we have to put a buffer

204 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

operator between mic and the clock operator, which belong to different clocks,
otherwise Liquidsoap will issue the usual error message

A source cannot belong to two clocks (alsa[], input.alsa_65308[]).

indicating that mic cannot belong both to its own new clock and the Icecast
clock.

Encoding in parallel. From a technical point of view, each clock runs in its own
thread and, because of, this two operators running in two different clocks can
be run in parallel and exploit multiple cores. This is particularly interesting for
encoding, which is the most cpu consuming part of the tasks: two outputs will
different clocks will be able to encode simultaneously in two different cores of
the cpu.

In order to illustrate this, consider the following script which performs two
encodings of two different video files:

a = single("video.mkv")

b = single("video.mkv")

output.file(%theora, "/tmp/a.ogv", a)

output.file(%theora, "/tmp/b.ogv", b)

If we have a look at the cpu usage, we see that only one core is used at a given
time:

(the kernel changes the core we use over time in order to better distribute the
heat, but there is only one core used at a given time). Now, let us assign different
clocks to the outputs, by changing the clock of the source of the second output,
which will not be the default one anymore:

a = single("video.mkv")

b = single("video.mkv")

output.file(%theora, "/tmp/a.ogv", a)

output.file(%theora, "/tmp/b.ogv", clock(b))

We see that we now often use two cores simultaneously, which makes the
encoding twice as fast:

6.10. GOING FURTHER 205

Here, things are working well because the two encoders encode different sources
(a and b). If they encode a common source, it can still be done by using a buffer

s = single("video.mkv")

output.file(%theora, "/tmp/a.ogv", s)

output.file(fallible=true, %theora, "/tmp/b.ogv", clock(buffer(s)))

with the risk that there is a glitch at some point because the speed of the clocks
differ slightly, resulting in buffer under or overflow.

Offline processing. Liquidsoap has some support for writing standalone
scripts, for instance to automate some processing on audio files. Those will
typically begin with

#!/usr/bin/env -S liquidsoap -q

which means that the rest of the script should be executed by the default com-
mand liquidsoap, with the -q argument passed in order to avoid printing the
usual log messages.

Retrieving commandline arguments. The arguments of the script can be obtained
with the argv function which takes a number n and returns the n-th argument.
This means that if your script is called myscript.liq and you run

./myscript.liq arg1 arg2

then argv(1) will return "arg1", argv(2) will return "arg2" and argv(3) will
return "" (the empty string is returned by default when there is no such an
argument). If you run your script with liquidsoap instead, the arguments in
argv are those which are after the “--” argument. For instance, if we run

liquidsoap mylib.lib myscript.liq -- arg1 arg2

the arguments in argv are going to be "arg1" and "arg2", as above.

Deactivating synchronization. Another useful trick to process files in scripts is
to assign a clock to the output with sync="none" as parameter: this will make
Liquidsoap assume that the operator is taking care of synchronization on its own,
and thus produce the stream as fast as the cpu allows. This means processing

206 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

a 5 minutes mp3 file will not take 5 minutes, but will be performed as fast as
possible.

For instance, we have used this in the following script convert2wav which, as its
name indicates, converts any audio file into wav format:

#!/usr/bin/env -S liquidsoap -q

Intput file name

infile = argv(1)

Check that it exists

if infile == "" then

print("Error: please provide a file as argument.")

exit(1)

elsif not file.exists(infile) then

print("Error: file #{infile} does not exist.")

exit(1)

end

Output file name

outfile = argv(default=path.remove_extension(infile)^".wav", 2)

print(newline=false, "Encoding #{infile} to #{outfile}... ")

Play the file once

s = once(single(infile))

We use a clock with disabled synchronization

s = clock(sync="none", s)

Function called at the end of encoding

def stop()

print("done!")

shutdown()

end

Encode the file

output.file(%wav, outfile, fallible=true, on_stop=stop, s)

It can be used to convert any file to a wav file by running a command such as

convert2wav test.mp3

which will produce a file test.wav. As you can see, the script reads the file
name as a commandline argument, plays it using once(single(infile)) which
is put in a clock without synchronization, and finally outputs it to a file, calling
shutdown to stop the script when the whole file has been played and the source
becomes unavailable.

Of course, we could easily adapt this script in order to apply audio effects to files
(compression, volume normalization, etc), to merge a playlist into one file, and
so on. For instance, the following merge-playlist script will merge a playlist of
mp3 files into one mp3 file, without reencoding them:

6.10. GOING FURTHER 207

#!/usr/bin/env -S liquidsoap

infile = argv(1)

outfile = argv(default="playlist.mp3", 2)

s = playlist(mode="normal", loop=false, infile)

s = clock(sync="none", s)

output.file(fallible=true, on_stop=shutdown,

%ffmpeg(format="mp3", %audio.copy), outfile, s)

It can be run with a commandline of the form

merge-playlist myplaylist output.mp3

Dynamic sources. Sources can be created dynamically in Liquidsoap: the
number of source does not have to be fixed in advance. For instance, the script

pls = file.ls("playlists/")

def play(list)

log.important("Playing #{list}.")

s = mksafe(playlist("playlists/#{list}"))

ignore(output.icecast(%mp3, mount="#{list}", s))

end

list.iter(play, pls)

will look at all the files in the playlists/ directory, which are supposed to be
playlists, and, for each such file (we iterate over the list of files with list.iter),
will play it on a corresponding Icecast mountpoint. The point here is that the
number of source is not fixed in advance as in most scripts: there will be as
many playlist and output.icecast operators as there are playlists!

Creating sources during execution. Another point is that the creation of a source
can be done at any point during the execution, not necessarily at startup. For
instance, as a variant of the preceding script, we are going to register a telnet
command play p which starts playing a given playlist p and stop p which stops
playing a given playlist p, the playlist being located at playlists/p:

server.telnet()

sources = ref([])

def play(pl)

s = mksafe(playlist("playlists/#{pl}"))

s = output.icecast(%mp3, mount="#{pl}", s)

sources := list.add((pl, s), sources())

"Playing #{pl}."

end

def stop(pl)

s = list.assoc(pl, sources())

sources := list.assoc.remove(pl, sources())

s.shutdown()

208 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

"Stopped #{pl}."

end

server.register("play", play)

server.register("stop", stop)

Here, we have two commands play and stop which are registered with
server.register. We maintain a list sources which contains pairs consisting of
the name of currently played playlists and the corresponding sources (this is
an association list): the play command, in addition to playing the requested
playlist, adds the pair (pl, s) to the list, where pl is the name of the playlist and
s is the source we created to play it. The stop command finds the source to stop
by looking for its name in the list with list.assoc, removes it from the list with
list.assoc.remove and then stops the source by calling its shutdown method.

As a general rule, any dynamically created source which is not used anymore
should be shut down using its shutdown method in order to avoid uselessly
wasting resources.

Evenmore dynamic sources. Wehave seen that we can dynamically create sources,
but this cannot be used to dynamically change the contents of sources which
are already playing. This behavior can be achieved by using source.dynamic:
this operator creates a source, which has a method set to change the source it
is relaying, and can thus be used to create a source which changes overtime. It
can be thought of as a suitable analogous of references for sources.

For instance, the add operator takes a fixed list of sources, but suppose that
the list of sources we want to add varies over time. We can program this with
source.dynamic where, each time the list changes, we use the set method to
update the dynamic source and enforce that it consists in add applied to the
updated list. For instance, the following script maintains a list sine sources, to
which we add some new elements from time to time, with random parameters,
by calling the function new:

d = source.dynamic()

sines = ref([])

output(d)

def new()

Remove finished sines

sines := list.filter(source.is_ready, sines())

Generate a new sine and add it to the list

s = sine(amplitude=random.float(min=0., max=1.),

duration=random.float(min=0., max=5.),

random.float(min=200., max=1000.))

sines := list.add((s:source), sines())

log.important("Sine added, there are #{list.length(sines())}.")

6.10. GOING FURTHER 209

Update the dynamic source

d.set(add(normalize=false, sines()))

end

Add a new sine from time to time

thread.run(every={random.float(min=0., max=2.)}, new)

Should you try it, you should hear music which sounds like random bells playing,
sometimes interfering one with the other.

Of course, the above example is not something that you would usually have
in a radio, but this is the same mechanism which is used to implement the
request.player operator in the standard library. source.dynamic is also used in
the standard library to provide alternative implementation of basic Liquidsoap
operators, you should have a look at the file native.liq in order to learn more
about those.

210 CHAPTER 6. FULL WORKFLOW OF A RADIO STATION

211

7
Video

Historically, Liquidsoap was dedicated to generating audio streams such as those
found in radios, even though it was conceived from the beginning in order to be
extensible with other kinds of data, such as video. When it started in 2004, there
was absolutely no video support, then some work began to add that around 2009,
but it was still not much used, partly because it was quite inefficient. Starting
with the release of Liquidsoap 2.0 in 2021, the internal coding of video changed
to rgb to yuv420, which is much more compact and used by most video libraries:
Liquidsoap is now able to decently handle videos, as we will see in this chapter.

7.1 Generating videos

Playing a video. Most sources accepting audio files (single, playlist, etc.)
also accept video files, so that generating a video stream is performed in the
exact same way you would generate an audio stream, excepting that you start
from video files instead of audio files. For instance, you can play a video file
test.mp4 with

s = single("test.mp4")

output.audio_video(s)

The operator output.audio_video plays both the audio and the video of the
source s, and you can use output.video to play the video only. These operators
chose a local output operator among the ones provided by Liquidsoap. There
are currently two of them:

• output.sdl which uses the sdl library to display the video, and
• output.graphics which uses the library provided by OCaml in order to
display graphical data.

212 CHAPTER 7. VIDEO

The videos can even be directly be pulled from YouTube with the youtube-dl

protocol, which requires that you have installed the yt-dlp1 program:

log.level := 4

server.harbor()

s = single(timeout=600.,

"youtube-dl:https://www.youtube.com/watch?v=dQw4w9WgXcQ")

output.audio_video(s)

Since the whole video has to be downloaded beforehand, it can take quite some
time, which is why we specify a “large” timeout parameter (10 minutes instead
of the default 30 seconds).

As another example, if we have a playlist video.playlist of video files, it can
be played with

s = mksafe(playlist("videos.playlist"))

output.graphics(s)

output.pulseaudio(s)

Generally, the video will be generated form a playlist using the playlist oper-
ator or from user’s request using request.queue operator. Those were already
presented in section 6.1, nothing changes for video.

The webcam. Under Linux, it is possible to use our webcam as a source with the
input.v4l2 operator which reads from the webcam:

s = input.v4l2()

output.video(s)

Parameters of the video. The format used by Liquidsoap for videos can be
changed by setting the following configuration keys:

• settings.frame.video.width: width of videos (in pixels),
• settings.frame.video.height: height of videos (in pixels),
• settings.frame.video.framerate: number of images per seconds.

The default format for images is 1280×720 pixels at 25 images per seconds which
corresponds to the 720p (or HD ready) format. You can switch to 1080p (or Full
HD) format with

settings.frame.video.width := 1920

settings.frame.video.height := 1080

settings.frame.video.framerate := 25

Remember that processing video data in realtime is very costly. Reducing the
resolution to 854×480 (called 480p) or even 640×360 (called 360p) will degrade the
quality of images, but can greatly improve the cpu consumption, in particular if

1https://github.com/yt-dlp/yt-dlp

https://github.com/yt-dlp/yt-dlp

7.1. GENERATING VIDEOS 213

your server is getting a bit old: a low resolution video is better than a laggy or
jumpy one. . .

For convenience the functions video.frame.width, video.frame.height and
video.frame.rate are also defined and return the corresponding configuration
parameters.

Blank and colored frames. The operator blank can generate video (in addition
to audio): it will generate an image which is blank, i.e. fully transparent. In order
to generate a video of a given color, you can use the video.fill operator which
fills the video of the source with the color specified in the color argument. For
instance, the script

s = video.fill(color=0xff0000, blank())

output.video(s)

will play a red image. The color should be specified in hexadecimal, in the form
0xrrggbb where rr specifies the red intensity, gg the green and bb the blue, each
color ranges from 00 (color absent) to ff (color with maximum intensity) in
hexadecimal.

Images. Images can be used as sources just as video files: they are accepted by
operators such as single, playlist, etc. For instance,

s = single("test.png")

output.video(s)

Liquidsoap will complain that it cannot decode the file test.png. This is because,
by default, Liquidsoap tries to decode the image with an audio track, and this is
not possible for an image. We can however force the source to have no audio as
follows, and you should then see the image:

s = (single("test.png"):source(audio=none,...))

output.video(s)

Here, (x:source(audio=none,...)) means that we constrain x to be a source
with no audio, this mechanism is explained in more details in section 8.1. In
order for you to avoid thinking of those subtleties, the standard library provides
the image operator which does this for you and conveniently creates a source
from an image:

s = image("test.png")

output.video(s)

You are advised to use this operator when dealing with images.

Specifying the dimensions. Decoders also take in account the following metadata
when decoding images:

214 CHAPTER 7. VIDEO

• x, y: offset of the decoded image (in pixels),
• width, height: dimensions of the decoded image (in pixels),
• duration: how long the image is made available.

This means that the script

s = image("annotate:width=50,height=50:test.png")

output.video(s)

will show a small image of 50×50 pixels.

Cover art. Most recent audio formats (such as mp3 or Ogg) allow embedding the
cover of the album into metadata. Liquidsoap has support for extracting this and
provides the video.cover operator in order to extract the cover from an audio
stream and generate a video stream from it. The script

a = playlist("~/Music")

s = source.mux.video(video=mksafe(video.cover(a)), a)

output.audio_video(s)

defines an audio source a from our music library, generates a video track v from
its covers with video.cover, adds it to the sound track a (with source.mux.vide,
detailed below) and plays the result. It is important here that we use mksafe

around video.cover in order to play black by default: the source will not be
available when the track has no cover!

Playlists. If you want to rotate between images, you can use playlists containing
images. However, remember that images have infinite duration by default, and
therefore a durationmetadata should be added for each image in order to specify
how long it should last. The most simple way of performing this is to have
entries of the form

annotate:duration=5:/path/toimage.jpg

Alternatively, if the playlist contains only the paths to the images, the duration

metadata can be added by using the prefix argument of the playlist operator.
For instance, the script

s = playlist(prefix="annotate:duration=2:", "image.playlist")

will display for 2 seconds the images of the playlist image.playlist.

Changing images. The image operator produces a source with a method set

which can be used to change the displayed image: it takes as argument the new
path to the image to stream. For instance, the following script shows a random
image in the current directory every 2 seconds:

files = file.ls(".")

files = list.filter(

7.1. GENERATING VIDEOS 215

fun(x) -> string.match(pattern=".*\\.png|.*\\.jpg", x),

files)

s = image(list.hd(files))

thread.run(every=2., {s := list.pick(files)})

In more details, the file.ls(".") function returns a list of files in the current
directory. We then use list.filter to extract all the files which endwith the .png
or .jpg extension (the string.match function looks at whether the strings match
the regular expression .*\\.png|.*\\.jpg which means: “anything followed by
.png or anything followed by .jpg”). We define an image source s of which we
change the image every 2 second using the set method, with list.pick(files)

which picks a random element of the list files.

This mechanism can also be used to change the displayed image depending on
some metadata. For instance, consider the script

a = playlist("playlist-with-images")

v = image("test.png")

a.on_track(fun(m) -> v := m["image"])

s = source.mux.video(video=mksafe(v), a)

output.audio_video(s)

It creates a source a from a playlist playlist-with-image which contains audio
songs with a metadata image indicating the image to display with the song.
Typically, a line of this playlist would look like

annotate:image="myimage.png":mysong.mp3

(or the metadata image could also be hardcoded in the audio files). It also creates
an image source v, whose image is set to the contents of the image metadata of
each new track in a. Finally, we show the source s obtained by combining the
audio source a and the video source v.

Adding videos. Our beloved add operator also works with videos. For instance,
we can add a logo on top of our video source s by adding a scaled down version
of our logo.png image:

s = playlist("videos")

logo = image("annotate:x=10,y=10,width=50,height=50:test.png")

s = add([s, logo])

output.audio_video(s)

When taking a list of sources with video as argument, the add operator draws
the rightmost last: it is therefore important that the logo source is second so
that it is drawn on top of the other one.

Because one often does this, Liquidsoap provides the function video.add_image,
which allows adding an image on top of another source, and the previous script
can be more concisely written as

216 CHAPTER 7. VIDEO

s = playlist("videos")

s = video.add_image(x=10, y=10, width=50, height=50, file="test.png",

s)↪→

output.audio_video(s)

The function video.add_image moreover has the advantage of allowing getters
for the parameters, so that we can program a moving logo as follows:

s = playlist("videos")

x = {int(10.+10.*cos(6.*time()))}

y = {int(10.+10.*sin(6.*time()))}

s = video.add_image(x=x, y=y, width=50, height=50, file="test.png", s)

output.audio_video(s)

Picture in picture. Instead of adding a small image on top of a big one, we can
also add a small video on top of a big one. In order to reduce the size of a video,
we can either use

• video.scale: which scales a video according to a given factor scale,
• video.resize: which resizes a video to a given size specified by its width
and height.

Both functions also allow translating the video so that the upper-left corner is
at a given position (x, y).

For instance, the following script adds a small webcam capture on top of the
main video:

s = playlist("videos.playlist")

w = source.mux.audio(audio=blank(), input.v4l2())

w = video.scale(x=10, y=10, scale=0.1, w)

s = add([s, w])

output.audio_video(s)

Here, the main source s is a playlist of videos and w is the capture of the webcam.
Since it does not have audio (only video), we add to it a blank audio track so that
it has the same type as the source s and can be added with it. We scale down
the webcam image with video.scale and finally add it on top of the main video
with add.

Alpha channels. A defining feature of video in Liquidsoap is that alpha channels
are supported for video: this means that images in videos can have more or less
transparent regions, which allows to see the “video behind” whenever adding
videos. The overall opacity of a video can be changed with the video.opacity

operator, which takes a coefficient between 0 (transparent) and 1 (fully opaque)
in addition to the source. For instance, with

s = add([s1, video.opacity(.75, s2)])

7.1. GENERATING VIDEOS 217

we are adding the source s1 with the source s2 made opaque at 75%: this means
that we are going to see 75% of s2, and the remaining 25% are from s1 behind.

Transparent regions are also supported from usual picture formats such as png.
In particular, when you add a logo to a video stream, it does not have to be a
square!

Combining audio and video sources. Given an audio source a and a video
source v, one can combine them in order to make a source s with both audio and
video with the source.mux.audio and source.mux.video operators. Namely, in

s = source.mux.audio(audio=a, v)

the source.mux.audio replaces the audio channel of the source v by the one of
the source a. And we can similarly replace the video channel with

s = source.mux.video(video=v, a)

For instance, we can generate a stream from a playlist of audio files and a playlist
of image files with

a = playlist("~/Music")

v = playlist(prefix="annotate:duration=10:", "image.playlist")

s = source.mux.video(video=v, a)

The “opposite” of the muxing functions are the functions source.drop.audio and
source.drop.video, which respectively remove the audio and video channels
from a source. For instance, we can remove the video channel of a an audio+video
source s with

s = source.drop.video(s)

(Cross)fading. In order to have nice endings for video, one can use the
video.fade.out operator which will fade out to black (or actually rather to
transparent) the video. The time it takes to perform this is controlled by
the duration parameter (3 seconds by default), the kind of transition can be
controlled by the transition parameter whose values can be

• fade: perform a fade to blank,
• slide_left, slide_right, slide_up, slide_down: make the video slide left,
right, up or down,

• grow: makes the image get smaller and smaller,
• disc: have a black disc covering the image,
• random: randomly choose among the previous transitions.

Similarly, the operator video.fade.in add fade effects at the beginning of tracks:

s = video.fade.in(transition="disc", s)

218 CHAPTER 7. VIDEO

Since the add and cross operators also work with video sources, this means that
we can nicely crossfade the tracks of a video playlist as follows:

s = playlist("videos.playlist")

s = video.fade.out(duration=1., s)

s = video.fade.in (duration=1., s)

s = cross(duration=1.5, fun (a,b) -> add([a.source, b.source]), s)

output.audio_video(s)

We apply fading at the beginning and the end of the videos, and then use the
cross operator to add the end of each track with the beginning of the next one
during 1.5 seconds. As a variant, slided transitions can be achieved with

s = playlist("videos.playlist")

s = video.fade.in (duration=1., transition="slide_right", s)

s = cross(duration=1., fun (a,b) -> add([a.source, b.source]), s)

output.audio_video(s)

Test sources. In order to generate test videos, the operator video.testsrc can
be used. For instance,

s = video.testsrc()

will generate a video such as

The pattern displayed can be changed by passing the parameter pattern

whose value can be "testsrc" (the default value), "testsrc2", "smptebars" or
"rgbtestsrc".

Text. In order to add text on videos, we provide the video.add_text operator
which, in addition to the text to print and the source on which it should add the
text, takes the following optional arguments:

• color: color of the text, in the format 0xrrggbb as explained above for
video.fill,

• font: the path to the font file (usually in ttf format),

7.1. GENERATING VIDEOS 219

• metadata: metadata on which the text should be changed,
• size: the font size,
• speed: the speed at which it should scroll horizontally to have a “news
flash” effect (in pixels per seconds, set to 0 to disable),

• x and y: the position of the text.

This function uses one of the various basic implementations we provide. You
should actually try those various implementations in order to reach what you
want: they have various quality and functionalities, and unfortunately we have
not found the silver bullet yet. Those implementations are

• video.add_text.native: the native implementation. It always works and
does not rely on any external library, but uses a hand-made, hard-coded,
low-fi font.

• video.add_text.sdl / video.add_text.gd / video.add_text.gstreamer /
video.add_text.ffmpeg: synthesize the text using sdl, GD, GStreamer
and FFmpeg libraries.

For instance,

s = video.add_text(size=30, "Hello world!", s)

The text is a getter which means that it can vary over times. For instance, the
following prints the current volume and bpm of a song:

s = playlist("~/Music")

s = source.mux.video(video=blank(), s)

s = rms(s)

rms = s.rms

s = bpm(s)

bpm = s.bpm

s = video.add_text.native(color=0x9999ff, speed=0, x=50, y=50, size=50,

{"Volume: #{rms()}\nBPM: #{bpm()}"}, s)

output.audio_video(s)

and here is the output:

220 CHAPTER 7. VIDEO

The position parameters are also getters, so that the position of the text can
also be customized over time. For instance, the following will add a text moving
along the diagonal at the speed of 10 pixels per second in each direction:

def x() = int(10. * time.up()) end

def y() = int(10. * time.up()) end

s = video.add_text(size=30, speed=0, x=x, y=y, "Hello world!", s)

7.2 Filters and effects

In order to change the appearance of your videos Liquidsoap offers video effects.
These are not as well developed as for audio processing, but this is expected to
improve in the future, and we support generic libraries which provide a large
amount of effects.

Builtin filters. By default, Liquidsoap only offers some very basic builtin video
filters such as

• video.greyscale: convert the video to black and white,
• video.opacity: change the opacity of the video,
• video.fill: fill the video with given color,
• video.scale / video.resize: change the size of the video.

Frei0r. Liquidsoap has native support for frei0r plugins1, which are based on
the frei0r api for video effects. When those are installed on your system, they are
automatically detected and corresponding operators are added in the language.
Those have names of the form video.frei0r.*where * is the name of the plugin.
For instance, the following adds a “plasma effect” to the video:

s = video.frei0r.distort0r(s)

Each operator (there are currently 129) of course has specific parameters which
allow modifying its effect, you are advised to have a look at their documentation,
as usual.

FFmpeg filters. Another great provider of video (and audio) effects is FFmpeg:
at the time of writing, we currently have access to 447 of those2! Its filters are
a bit more involved to use because FFmpeg expects that you create a graph of
filters (by formally connecting multiple filters one to each other) before being
able to use this graph for processing data, and because it operates on data in
FFmpeg’s internal format. Those filters can process both audio and video data,
we chose to present it here and not in chapter 6 because it is more likely to be
used for video processing.

1https://frei0r.dyne.org/
2https://ffmpeg.org/ffmpeg-filters.html

https://frei0r.dyne.org/
https://ffmpeg.org/ffmpeg-filters.html

7.2. FILTERS AND EFFECTS 221

The basic functionwe are going to use for creating filters is ffmpeg.filter.create.
Its argument is a function mkfilter which takes as argument the graph of filters
we are going to build, attaches filters to it, and returns the resulting stream.
Usually this function

• uses the operators

– ffmpeg.filter.audio.input

– ffmpeg.filter.video.input

to input from some stream (note that those function operate on audio /
video tracks, not sources),

• processes the stream using one or more ffmpeg.filter.* functions,

• outputs the result using one of the operators

– ffmpeg.filter.audio.output

– ffmpeg.filter.video.output

– ffmpeg.filter.audio_video.output

In this way, we can define the following function myfilter which inputs the
audio track and add a flanger effect to it, inputs the video track, flips its images
horizontally and inverts the colors of the video, and finally outputs both audio
and video:

def myfilter(s) =

def mkfilter(graph) =

a = ffmpeg.filter.audio.input(graph, source.tracks(s).audio)

a = ffmpeg.filter.flanger(graph, a)

a = ffmpeg.filter.audio.output(graph, a)

v = ffmpeg.filter.video.input(graph, source.tracks(s).video)

v = ffmpeg.filter.hflip(graph, v)

v = ffmpeg.filter.negate(graph, v)

v = ffmpeg.filter.video.output(graph, v)

source({

audio = a,

video = v,

metadata = track.metadata(a),

track_marks = track.track_marks(a)

})

end

ffmpeg.filter.create(mkfilter)

end

The function can then be used on a source s as follows:

222 CHAPTER 7. VIDEO

s = single("lf.mp4")

s = myfilter(s)

output.file(fallible=true,

%ffmpeg(format="matroska",

%audio.raw(codec="libmp3lame"),

%video.raw(codec="libx264")),

"/tmp/out.mkv", s)

If you look at the type of the function myfilter, you will see that it is

(source(audio=ffmpeg.audio.raw('a), video=ffmpeg.video.raw('b),

midi=none)) -> source(audio=ffmpeg.audio.raw('d),

video=ffmpeg.video.raw('e), midi=none)

↪→

↪→

which means that it operates on streams where both audio and video are in
FFmpeg’s internal raw format (ffmpeg.audio.raw and ffmpeg.video.raw). In the
above example this is working well because

• sources which decode audio from files such as single (or playlist) can
generate streams in most formats, including FFmpeg’s raw,

• the encoder we have chosen operates directly on streams in FFmpeg’s
raw format (because we use an %ffmpeg encoder with %audio.raw and
%video.raw streams).

If you want to operate on a source s which is in the usual Liquidsoap’s internal
format, you can use

• ffmpeg.raw.encode.audio_video to convert from Liquidsoap’s internal to
FFmpeg’s raw format,

• ffmpeg.raw.decode.audio_video to decode FFmpeg’s raw format into Liq-
uidsoap’s internal format.

For instance, from the above myfilter function, we can define a function
myfilter' which operates on usual streams as follows:

def myfilter'(s)

s = ffmpeg.raw.encode.audio_video(%ffmpeg(%audio.raw, %video.raw), s)

s = myfilter(s)

ffmpeg.raw.decode.audio_video(s)

end

s = single("lf.mp4")

s = myfilter'(s)

output.audio_video(s)

by encoding before applying the filter and decoding afterward.

7.3. ENCODERS 223

7.3 Encoders

The usual outputs described in section 6.6 support streams with video, which
includes

• output.file: for recording in a file,
• output.icecast: for streaming using Icecast,
• output.hls: for generating hls playlists streams,
• output.dummy: for discarding a source.

We do not explain them here again: the only difference with audio is the choice
of the encoder which indicates that we want to use sources with video.

FFmpeg. The encoder of choice for video is FFmpeg, that we have already seen
in section 6.7. The general syntax is

%ffmpeg(format="...", %audio(...), %video(...))

where the omitted parameters specify the format of the container, the audio
codec and the video codec.

Formats. The full list of supported formats can be obtained by running ffmpeg

-formats. Popular formats for

• encoding in files:
– mp4 is the most widely supported, (its main drawback is that index

tables are located at the end of the file, so that partially downloaded
files cannot reliably be played, and the format is not suitable for
streaming),

– matroska corresponds to .mkv files, supports slightly more codecs
than mp4 and it license-free, but is less widely supported,

– webm is well supported by modern browsers (in combination with
the vp9 codec),

– avi is getting old and should be avoided,
• streaming:

– mpegts is the standard container for streaming, this is the one you
should use for hls for instance,

– webm is a modern container adapted to streaming with Icecast,
– flv is used by some old streaming protocols such as rtmp, still widely

in use to stream video to platforms such as YouTube.

Many other formats1 are also supported.

Codecs. The codec can be set by passing the codec argument to %video. The
codecs all take width and height parameters, which allow setting the dimensions

1https://ffmpeg.org/ffmpeg-formats.html

https://ffmpeg.org/ffmpeg-formats.html

224 CHAPTER 7. VIDEO

of the encoded video. Remember that smaller images have lower quality, but
require smaller bitrates and encode faster. Common resolutions for 16:9 aspect
ratio are

360p 480p 720p 1080p
640×360 854x480 1280×720 1920×1080

the “default reasonable value” being 720p nowadays. By default, the videos are
encoded at the dimensions of internal frames in Liquidsoap, which can be set via
video.frame.width and video.frame.heigth. If you only need to encode a video
to “small” dimensions, it is a better idea to lower these values than specifying
the codec parameters, in order to avoid computing large images which will be
encoded to small ones.

You generally also want to set the bitrate by passing the b argument in bits
per second (e.g. b="2000k"). Typical bitrates for streaming, depending on the
resolution, at 25 frames per second, are

Resolution Bitrate
640×360 700k
1280×720 2500k
1920×1080 4000k

Alternatively, many encoders allow specifying a “quality” parameter instead
of a bitrate: in this case, it tries to reach a target quality instead of bitrate, by
increasing the bitrate on complex scenes. This is not advised for videos intended
for streaming since it can lead to unexpected bandwidth problems on those
scenes.

Another useful parameter is the gop (group of picture) which can be set by
passing the argument g and controls how often keyframes are inserted (we
insert one keyframe every g frames). A typical default value is 12, which allows
easy seeking in videos, but for video streams this value can be increased in
order to decrease the size of the video. The habit for streaming is to have a
keyframe every 2 seconds or less, which means setting g=50 at most for the
default framerate of 25 images per second.

We now detail the two most popular codecs H.264 and vp9, but there are many
other ones1.

1https://ffmpeg.org/ffmpeg-codecs.html

https://ffmpeg.org/ffmpeg-codecs.html

7.3. ENCODERS 225

H.264. The most widely used codec for encoding video is libx264which encodes
inH.264. This format has hardware support inmany devices such as smartphones
(for decoding). The most important parameter is preset, which controls how
fast the encoder is, and whose possible values are

ultrafast, superfast, veryfast, faster, fast, medium, slow, slower,
veryslow

with the obvious meaning. Of course, the faster the setting is the lower the
quality of the video will be, so that you have to find a balance between cpu
consumption and quality.

Instead of imposing a bitrate, one can also choose to encode in order to reach a
target quality, which is measured in crf (for Constant Rate Factor) and can be
passed in the crf parameter. It is an integer ranging from 0 (the best quality) to
51 (the worse quality). In order to give you ideas,

• 0 is lossless,
• 17 is with nearly unnoticeable compression,
• 23 is the default value,
• 28 is the worse acceptable value.

Additional parameters can be passed in the x264-params parameter, e.g.

"x264-params"="scenecut=0:open_gop=0:min-keyint=150:keyint=150"

use this if you need very fine tuning for your encoding (you need to put quotes
around the parameter name x264-params because it contains a dash).

A typical setting for encoding in a file for backup would be

%ffmpeg(format="mp4",

%audio(codec="libmp3lame", q=4),

%video(codec="libx264", preset="fast", crf=20))

and for streaming in hls it would be

%ffmpeg(format="mpegts",

%audio(codec="aac", b="96k"),

%video(codec="libx264", preset="ultrafast", b="2500k"))

The successor of H.264 is called H.265 (how imaginative) or hevc and is available
through FFmpeg codec libx265. The parameters are roughly the same as those
for libx264 described above.

VP9 and AV1. vp9 is a recently developed codec, which is generally more efficient
than H.264 and can achieve lower bitrates at comparable quality, and is royalty-
free. It is supported by most modern browsers and is for instance the used by the
YouTube streaming platform. It is generally encapsulated in the WebM container
although it is supported by most modern containers.

226 CHAPTER 7. VIDEO

The encoder in FFmpeg is called libvpx-vp9, some of its useful parameters1 are

• quality can be good (the decent default), best (takes much time) or
realtime (which should be used in your scripts since we usually want
fast encoding),

• speed goes from -8 (slow and high quality) to 8 (fast but low quality), for
realtime encoding you typically want to set this to 5 or 6,

• crf controls quality-based encoding, as for H.264.

A typical WebM encoding would look like this:

%ffmpeg(format="webm",

%audio(codec="libopus", samplerate=48000, b="128k"),

%video(codec="libvpx-vp9", quality="realtime", speed=6,

b="2500k"))

and if you are on budget with respect to cpu and bandwidth:

%ffmpeg(format="webm",

%audio(codec="libopus", samplerate=48000, b="128k"),

%video(codec="libvpx-vp9", width=854, height=480, g=75,

quality="realtime", speed=7, b="500k"))

The successor of vp9 is av1 and is under heavy development and diffusion. It
can be used through the FFmpeg codec libaom-av1 which essentially takes the
same parameters as libvpx-vp9.

Ogg/Theora. We have support for the Theora video codec encapsulated in Ogg
container, already presented in section 6.7. The encoder is named %theorawhose
main parameters are

• bitrate: bitrate of the video (for fixed bitrate encoding, in bits per second),
• quality: quality of the encoding (for quality-based encoding, between 0
and 63),

• width / height: dimensions of the image,
• speed: speed of the encoder,
• keyframe_frequency: how often keyframes should be inserted.

For instance, we can encode a video in Ogg with Opus for the audio and Theora
for the video with

%ogg(%opus, %theora(bitrate=1000000))

AVI. Liquidsoap has native (without any external library) builtin support for
generating avi files with the %avi encoder. The resulting files contain raw data
(no compression is performed on frames), which means that we need to compute
almost nothing but also that it will not be compressed. This format should thus

1https://developers.google.com/media/vp9

https://developers.google.com/media/vp9

7.4. SPECIFIC INPUTS AND OUTPUTS 227

be favored for machines which are tight on cpu but not on hard disk, for backup
purposes:

output.file(%avi, "/tmp/backup.avi", s)

You can expect the resulting files to be huge and you will typically want to
re-encode the resulting files afterward.

If you want to generate avi files with usual codecs, you should use the FFmpeg
encoder presented above. For instance,

%ffmpeg(format="avi",

%audio(codec="libmp3lame", b="128k"),

%video(codec="libx264", b="2500k"))

7.4 Specific inputs and outputs

Standard streaming methods. The two standard methods for streaming video
are the same as those which have already been presented for audio in section 6.6:
they are Icecast (with output.icecast) and hls (with output.hls). The only
difference is that the encoder should be one which has support for video.

Streaming platforms. Another very popular way of streaming video is by
going through streaming platforms such as YouTube, Twitch or Facebook. All
the three basically use the same method for streaming. You first need to obtain
a secret key associated to your account on the website. Then you should send
your video, using the rtmp protocol, to some standard url followed by your
secret key, using the output.url operator, and that’s it. Because of limitations
of the rtmp protocol, videos should be encoded using the flv container with
H.264 for video and mp3 or aac for audio.

YouTube. The streaming key can be obtained from the YouTube streaming plat-
form1 and the url to stream to is

rtmp://a.rtmp.youtube.com/live2/<secret key>

If we suppose that we have stored our key in the file youtube-key, we can stream
a video source s to YouTube by

key = string.trim(file.contents("youtube-key"))

url = "rtmp://a.rtmp.youtube.com/live2/#{key}"

enc = %ffmpeg(format="flv",

%audio(codec="libmp3lame", samplerate=44100, q=5),

%video(codec="libx264", width=854, height=480,

b="800k", g=50, preset="veryfast"))

output.url(fallible=true, url=url, enc, s)

1https://youtube.com/live_dashboard

https://youtube.com/live_dashboard

228 CHAPTER 7. VIDEO

These settings are for quite low quality encoding. You should try to increase
them depending on how powerful your computer and internet connection are.

Twitch. The streaming key can be obtained from the Twitch dashboard1 and a
list of ingesting servers2 is provided (the url you should send your stream to is
obtained by appending your key to one of those servers). For instance:

key = string.trim(file.contents("twitch-key"))

url = "rtmp://cdg.contribute.live-video.net/app/#{key}"

enc = %ffmpeg(format="flv",

%audio(codec="libmp3lame", samplerate=44100, b="128k"),

%video(codec="libx264", width=854, height=480,

b="800k", g=50, preset="veryfast"))

output.url(fallible=true, url=url, enc, s)

Facebook. The url and streaming key can be obtained from the Facebook Live
Producer3. According to recommendations4, your video resolution should not
exceed 1280×720 at 30 frames per second, video should be encoded in H.264 at
at most 4000 kbps and audio in aac in 96 or 128 kbps. Keyframes should be sent
at most every two second (the g parameter of the video codec should be at most
twice the framerate). For instance,

s = single("video.mkv")

key = string.trim(file.contents("facebook-key"))

url = "rtmps://live-api-s.facebook.com:443/rtmp/#{key}"

enc = %ffmpeg(format="flv",

%audio(codec="aac", samplerate=44100, b="96k"),

%video(codec="libx264", width=854, height=480,

b="800k", g=50, preset="veryfast"))

output.url(fallible=true, url=url, enc, s)

thread.run(every=1., {print(clock.status.seconds())})

Saving frames. In case you need it, it is possible to save frames of the video
with the video.still_frame operator: this operator adds to a source a method
save which, when called with a filename as argument, saves the current image
of the video stream to the file. Currently, only bitmap files are supported and
the filename should have a .bmp extension. For instance, the following script
will save a “screenshot” of the source s every 10 seconds:

s = single("video.mp4")

s = video.still_frame(s)

1https://dashboard.twitch.tv/settings/stream
2https://stream.twitch.tv/ingests/
3https://facebook.com/live/producer/
4https://facebook.com/help/1534561009906955

https://dashboard.twitch.tv/settings/stream
https://stream.twitch.tv/ingests/
https://facebook.com/live/producer/
https://facebook.com/help/1534561009906955

7.4. SPECIFIC INPUTS AND OUTPUTS 229

thread.run(every=10., {s.save("/tmp/shot#{time()}.bmp")})

output.audio_video(s)

230 CHAPTER 7. VIDEO

231

8
A streaming language

After reading chapter 5, you should have been convinced you that Liquidsoap is
a pretty decent general-purpose scripting language. But what makes it unique
is the features dedicated to audio and video streaming, which were put to use in
previous chapters. We now present the general concepts behind the streaming
features of the language, for those who want to understand in depth how the
streaming parts of the language work. The main purpose of Liquidsoap is to
manipulate functions which will generate streams and are called sources in
Liquidsoap. The way those generate audio or video data is handled abstractly:
you almost never get down to the point where you need to understand how or in
what format this data is actually generated, you usually simply combine sources
in order to get elaborate ones. It is however useful to have a general idea of how
Liquidsoap works internally. Beware, this chapter is a bit more technical than
previous ones.

8.1 Sources and content types

Each source has a number of channels of

• audio data: containing sound,
• video data: containing animated videos,
• midi data: containing notes to be played (typically, by a synthesizer),
• metadata: containing information about the current track (typically, title,
artist, etc.),

• track marks: indicating when a track is ending.

The midi data is much less used in practice in Liquidsoap, so that we will mostly
forget about it. The audio and video channels can either contain

232 CHAPTER 8. A STREAMING LANGUAGE

• raw data: this data is in an internal format (usually obtained by decoding
compressed files), suitable for manipulation by operators within Liquid-
soap, or

• encoded data: this is compressed data which Liquidsoap is not able to
modify, such as audio data in mp3 format.

In practice, users manipulate sources handling raw data most of the time since
most operations are not available on encoded data, even very basic ones such
as changing the volume or performing transitions between tracks. Support
for encoded data was introduced starting from version 2.0 of Liquidsoap and
we have seen in section 6.7 that it is mostly useful to avoid encoding a stream
multiple times in the same format, e.g. when sending the same encoded stream
to multiple Icecast instances, or both to Icecast and in hls, etc.

The type of sources is of the form

source(audio=..., video=..., midi=...)

where the “...” indicate the contents that the source can generate, i.e. the number
of channels, and their nature, for audio, video and midi data, that the source can
generate: the contents for each of these three is sometimes called the kind of
the source. For instance, the type of sine is

(?amplitude : {float}, ?duration : float, ?{float}) ->

source(audio=internal('a), video=internal('b), midi=internal('c))↪→

We see that it takes 3 optional arguments (the amplitude, the duration and
the frequency) and returns a source as indicated by the type of the returned
value: source(...). The parameters of source indicate the nature and number
of channels: here we see that audio is generated in some internal format (call
it 'a), video is generated in some internal data format (call it 'b) and similarly for
midi. The contents internal does not specify any number of channels, which
means that any number of channels can be generated. Of course, for the sine

operator, only the audio channels are going to be meaningful:

• if multiple audio channels are requested, they will all contain the same
audio consisting of a sine waveform, with specified frequency and ampli-
tude,

• if video channels are requested they are all going to be blank,
• if midi channels are requested, they are not going to contain any note.

As another example, consider the type of the operator drop_audiowhich removes
audio from a source:

(source(audio='a, video='b, midi='c)) -> source(audio=none, video='b,

midi='c)↪→

We see that it takes a source as argument and returns another source. We also
see that that is accepts any audio, video and midi contents for the input source,

8.1. SOURCES AND CONTENT TYPES 233

be they in internal format or not, calling them respectively 'a, 'b and 'c. The
returned source has none as audio contents, meaning that it will have no audio
at all, and that the video content is the same as the content for the input ('b),
and similarly for midi content ('c).

Internal contents. Contents of the form internal('a) only impose that the
format is one supported internally. If we want to be more specific, we can specify
the actual contents. For instance, the internal contents are currently:

• for raw audio: pcm,
• for raw video: yuva420p,
• for midi: midi.

The argument of pcm is the number of channels which can either be none (0 audio
channel), mono (1 audio channel), stereo (2 audio channels) or 5.1 (6 channels
for surround sound: front left, front right, front center, subwoofer, surround left
and surround right, in this order). For instance, the operator mean takes an audio
stream and returns a mono stream, obtained by taking the mean over all the
channels. Its type is

(source(audio=pcm('a), video='b, midi='c)) -> source(audio=pcm(mono),

video='b, midi='c)↪→

We see that the audio contents of the input source is pcm('a) which means any
number of channels of raw audio, and the corresponding type for audio in the
output is pcm(mono), which means mono raw audio, as expected. We can also
see that the video and midi channels are preserved since their names ('b and 'c)
are the same in the input and the output.

Note that the contents none and pcm(none) are not exactly the same: for the
first we know that there is no audio whereas for the second we now that there
is no audio and that this is encoded in pcm format (if you have troubles grasp-
ing the subtlety don’t worry, this is never useful in practice). For this reason
internal('a) and pcm('a) express almost the same content but not exactly. Ev-
ery content valid for the second, such as pcm(stereo), is also valid for the first,
but the content none is only accepted by the first (again, this subtle difference
can be ignored in practice).

For now, the raw video format yuva420p does not take any argument. The
only argument of midi is of the form channels=n where n is the number of
midi channels of the stream. For instance, the operator synth.all.sine which
generates sound for all midi channels using sine waves has type

(source(audio=pcm(mono), video='a, midi=midi(channels=16))) ->

source(audio=pcm(mono), video='a, midi=midi(channels=16))↪→

We see that it takes a stream with mono audio and 16 midi channels as argument
and returns a stream of the same type.

234 CHAPTER 8. A STREAMING LANGUAGE

Encoded contents. Liquidsoap has support for the wonderful FFmpeg1 library
which allows for manipulating audio and video data in most common (and
uncommon) video formats: it can be used to convert between different formats,
apply effects, etc. This is implemented by having native support for

• the raw FFmpeg formats: ffmpeg.audio.raw and ffmpeg.video.raw,
• the encoded FFmpeg formats: ffmpeg.audio.copy and ffmpeg.video.copy.

Typically, the raw formats used in order to input from or output data to FFmpeg
filters, whose use is detailed in section 7.2: as for Liquidsoap, FFmpeg can only
process decoded raw data. The encoded formats are used to handled encoded
data, such as sound in mp3, typically in order to encode the stream once in mp3
and output the result both in a file and to Icecast, this is detailed in section 6.7.
Their name come from the fact that when using those, Liquidsoap simply copies
and passes on data generated by FFmpeg without having a look into it.

Conversion from FFmpeg raw contents to internal Liquidsoap contents can be
performed with the function ffmpeg.raw.decode.audio, which decodes FFmpeg
contents into Liquidsoap contents. Its type is

(?buffer : float, ?max : float, source(audio=ffmpeg.audio.raw('a),

video=none, midi=none)) -> source(audio=pcm('b), video=none,

midi=none)

↪→

↪→

Ignoring the two optional arguments buffer and max, which control the buffering
used by the function, we see that this function takes a source whose audio has
ffmpeg.audio.raw contents and output a source whose audio has pcm contents.
The functions ffmpeg.raw.decode.video and ffmpeg.raw.decode.audio_video

work similarly with streams containing video and both audio and video
respectively. The functions ffmpeg.decode.audio, ffmpeg.decode.video and
ffmpeg.decode.audio_video have similar effect to decode FFmpeg encoded
contents to Liquidsoap contents, for instance the type of the last one is

(?buffer : float, ?max : float, source(audio=ffmpeg.audio.copy('a),

video=ffmpeg.video.copy('b), midi=none)) -> source(audio=pcm('c),

video=yuva420p('d), midi=none)

↪→

↪→

Conversely, the functions ffmpeg.raw.encode.audio, ffmpeg.raw.encode.video
and ffmpeg.raw.encode.audio_video can be used to encode Liquidsoap
contents into FFmpeg raw contents, and the functions ffmpeg.encode.audio,
ffmpeg.encode.video and ffmpeg.encode.audio_video can encode into FFmpeg
encoded contents.

The parameters for the FFmpeg contents are as follows (those should be com-
pared with the description of the raw contents used in Liquidsoap, described in
section 8.2):

• ffmpeg.audio.raw

1https://ffmpeg.org/

https://ffmpeg.org/

8.1. SOURCES AND CONTENT TYPES 235

– channel_layout: number of channels and their ordering (it can be
mono, stereo or 5.1 as for Liquidsoap contents, but many more are
supported such as 7.1 or hexagonal, the full list can be obtained by
running the command ffmpeg -layouts)

– sample_format: encoding of each sample (dbl is double precision
float, which is the same as used in Liquidsoap, but many more are
supported such as s16 and s32 for signed 16- and 32-bits integers,
see ffmpeg -sample_fmts for the full list),

– sample_rate: number of samples per second (typically, 44100),
• ffmpeg.video.raw

– width and height: dimensions in pixels of the images,
– pixel_format: the way each pixel is encoded (such as rgba for

red/green/blue/alpha or yuva420p as used in Liquidsoap, see ffmpeg

-pix_fmts),
– pixel_aspect: the aspect ratio of the image (typically 16:9 or 4:3)

• ffmpeg.audio.copy: parameters are codec (the algorithm used to encode
audio such as mp3 or aac, see ffmpeg -codecs for a full list), channel_layout,
sample_format and sample_rate,

• ffmpeg.video.copy: parameters are codec, width, height, aspect_ratio
and pixel_format.

Passive and active sources. Most of the sources are passive which means that
they are simply waiting to be asked for some data, they are not responsible for
when the data is going to be produced. For instance, a playlist is a passive source:
we can decode the files of the playlist at the rate we want, and will actually
not decode any of those if we are not asked to. Similarly, the amplification
operator amplify(a, s) is passive: it waits to be asked for data, then in turn
asks the source s for data, and finally it returns the given data amplified by the
coefficient a.

However, some sources are active which means that they are responsible for
asking data. This is typically the case for outputs such as to a soundcard
(e.g. output.alsa) or to a file (e.g. output.file). Perhaps surprisingly, some
inputs are also active: for instance, in the input.alsa source, we do not have
control over the rate at which the data is produced, the soundcard regularly
sends us audio data, and is responsible for the synchronization.

This way of functioning means that if a source is not connected to an active
source, its stream will not be produced. For instance, consider the following
script:

s = playlist("~/Music")

s.on_track(fun(_) -> print("New track in the source!"))

output(blank())

Here, the only active source is output which is playing the blank source. The

236 CHAPTER 8. A STREAMING LANGUAGE

source s is not connected to an active source, and its contents will never be
computed. This can be observed because we are printing a message for each
new track: here, no stream is produced, thus no new track is produced, thus we
will never see the message.

The above story is entirely not precise on one point. We will see in section 8.3
that it is not the exactly the active sources themselves which are responsible for
initiating computation of data, but rather the associated clocks.

Type inference. In order to determine the type of the sources, Liquidsoap
looks where they are used and deduces constraints on their type. For instance,
consider a script of the following form:

s = ...

output.alsa(s)

output.sdl(s)

In the first line, suppose that we do not know yet what the type of the
source s should be. On the second line, we see that it is used as an
argument of output.alsa and should therefore have a type of the form
source(audio=pcm('a), video='b, midi='c), i.e. the audio should be in pcm

format. Similarly, on the third line, we see that it is used as an argument
of output.sdl (which displays the video of the stream) and should therefore
have a type of the form source(audio='a, video=yuva420p('b), midi='c)),
i.e. the video should be in yuva420p format. Combining the two constraints, we
deduce that the type of the source should be of the form source(audio=pcm('a),

video=yuva420p('b), midi='c).

In the end, the parameters of the stream which are not fixed will be taken
to be default values. For instance, the number of audio channels will take
the default value 2 (stereo), which is specified in the configuration option
frame.audio.channels. If we want streams to be mono by default, we should
type, at the beginning of the script,

settings.frame.audio.channels := 1

Similarly, the default number of midi channels is 0, since it is expected to
be useless for most users, and can be changed in the configuration option
frame.midi.channels. Once determined at startup, the contents of the streams
(such as number of audio channels) is fixed during the whole execution of the
script. Earlier versions of Liquidsoap somehow supported sources with varying
contents, but this was removed because it turned out to be error-prone and not
used much in practice.

During the type checking phase, it can happen that two constraints are not
compatible for a given stream. In this case, an error is returned before the script
is executed. For instance, suppose that we have a source s and we execute the
following script:

8.1. SOURCES AND CONTENT TYPES 237

t = amplify(3., s)

u = ffmpeg.decode.audio(t)

output(u)

We recall that the type of amplify is essentially

(float, source(audio=pcm('a), video='b, midi='c)) ->

source(audio=pcm('a), video='b, midi='c)↪→

and the one of ffmpeg.decode.audio is essentially

(source(audio=ffmpeg.audio.copy('a), video=none, midi=none)) ->

source(audio=pcm('b), video=none, midi=none)↪→

On the first line of the script above, we are using amplify on s which means
that s should be of the form source(audio=pcm('a), video='b, midi='c),
i.e. the audio should be in pcm format, because amplify can only work
on internal data. Moreover, the type of t should be the same as the one
of s because the type of the output of amplify is the same as the source
given as argument. However, on the second line, we use u as argument for
ffmpeg.decode.audio, which means that it should have a type of the form
source(audio=ffmpeg.audio.copy('a), video=none, midi=none) and now we
have a problem: the audio of the source u should both be encoded in pcm and in
ffmpeg.audio.copy formats, which is impossible. This explains why Liquidsoap
raises the following error

At line 2, char 24:

Error 5: this value has type

source(audio=pcm(_),...) (inferred at line 1, char 4-18)

but it should be a subtype of

source(audio=ffmpeg.audio.copy(_),...)

which is a formal way of stating the above explanation.
this has been
changed, we only
have audio now!!!Adding and removing channels. As a final remark on the design of our

typing system, one could wonder why the type of the source returned by the
sine operator is

source(audio=internal('a), video=internal('b), midi=internal('c))

and not

source(audio=internal('a), video=none, midi=none)

i.e. why allow the sine operator to generate video and midi data, whereas those
are always quite useless (they are blank). The reason is mainly because of the
following pattern. Suppose that you want to generate a blue screen with a sine
wave as sound. You would immediately write something like this

238 CHAPTER 8. A STREAMING LANGUAGE

We create the source a which is the sine wave, the source b which is the blue
screen (obtained by taking the output of blank, which is black and mute, and
filling it in blue), we add them and finally play the resulting source s. The thing
is that we can only add sources of the same type: add being of type

([source(audio=internal('a), video=internal('b), midi=internal('c))])

-> source(audio=internal('a),video=internal('b),midi=internal('c))↪→

it takes a list of sources to add, and lists cannot contain heterogeneous elements,
otherwise said all the elements of a list should have the same type. Therefore,
in order to produce a source with both audio and video, the elements of the list
given as argument to add must all be sources with both audio and video.

If you insist on adding a video channel to a source which does not have one,
you should use the dedicated function source.mux.video, whose type is

(video : source(audio=none, video='a, midi=none), source(audio='b,

video=none, midi='c)) -> source(audio='b, video='a, midi='c)↪→

(and the function source.mux.audio can similarly be used to add audio to a
source which does not have that). However, since this function is much less
well-known than add, we like to leave the possibility for the user to use both
most of the time, as indicated above. Note however that the following variant of
the above script

a = sine()

b = video.fill(color=0x0000ff, blank())

s = source.mux.video(video=b, a)

output.audio_video(mksafe(s))

is slightly more efficient since the source a does not need to generate video and
the source b does not need to generate audio.

Dually, in order to remove the audio of a source, the operator drop_audio of type

(source(audio='a, video='b, midi='c)) -> source(audio=none, video='b,

midi='c)↪→

can be used, and similarly the operator drop_video can remove the video.

Type annotations. If you want to constrain the contents of a source, the
Liquidsoap language offers the construction (e : t) which allows constraining
an expression e to have type t (technically, this is called a type cast). It works for
arbitrary expressions and types, but is mostly useful for sources. For instance,
in the following example, we play the source s in mono, even though the default
number of channels is two:

s = single("test.mp3")

output((s : source(audio=pcm(mono))))

8.1. SOURCES AND CONTENT TYPES 239

Namely, in the second line, we constrain the type of s to be source(audio=pcm(mono)),
i.e. a source with mono audio.

Encoding formats. In order to specify the format in which a stream is encoded,
Liquidsoap uses particular annotations called encoders, already presented in
section 6.7. For instance, consider the output.file operator which stores a
stream into a file: this operator needs to know the kind of file we want to
produce. The (simplified) type of this operator is

(format('a), string, source('a)) -> unit

We see that the second argument is the name of the file and the third argument
is the source we want to dump. The first argument is the encoding format, of
type format('a). Observe that it takes a type variable 'a as argument, which is
the same variable as the parameters of the source taken as argument, and the
parameters of the returned source: the format required for the intput source
will depend on the chosen format.

Encoders. The encoding formats are given by encoders, whose name always
begin with the “%” character and can take parameters: their exhaustive list is
given in section 6.7. For instance, if we want to encode a source s in mp3 format,
we are going to use the encoder %mp3 and thus write something like

output.file(%mp3, "/tmp/backup.mp3", s)

If we have a look at the type of the encoder %mp3, we see that its type is

format(audio=pcm(stereo), video=none, midi=none)

which means that, in the above example, the source s will be of type

source(audio=pcm(stereo), video=none, midi=none)

and thus have to contain stereo pcm audio, no video and no midi. The encoders
take various parameters. For instance, if we want to encode mp3 in mono, at a
bitrate of 192 kbps, we can pass the parameters mono and bitrate=192 as follows:

output.file(%mp3(mono, bitrate=192), "/tmp/backup.mp3", s)

Some of those parameters will have an influence on the type of the stream. For
instance, if we pass mono as parameter, the type of the encoder becomes

format(audio=pcm(mono), video=none, midi=none)

and thus imposes that s should have mono audio.

Because it has such an influence on types, an encoder is not a value as any other
in Liquidsoap, and specific restrictions have to be imposed. In particular, you
cannot use variables or complex expressions in the parameters for the encoders.
For instance, the following will not be accepted

240 CHAPTER 8. A STREAMING LANGUAGE

b = 192

output.file(%mp3(mono, bitrate=b), "/tmp/backup.mp3", s)

because we are trying to use the variable b as value for the bitrate. This is
sometimes annoying and might change in the future.

Encoded sources. As another example of the influence of encoders, suppose that
we want to encode our whole music library as a long mp3. We would proceed in
this way:

s = playlist(loop=false, "~/Music")

s = clock(sync="none", s)

output.file(fallible=true, on_stop=shutdown, %mp3, "/tmp/out.mp3", s)

The first line creates a playlist source which will read all our music files once,
the second line ensures that we try to encode the files as fast as possible instead
of performing this in realtime as explained in section 6.10, and the third line
requires the encoding inmp3 of the resulting source, calling the shutdown function
once the source is over, which will terminate the script.

If you try this at home, you will see that it takes quite some time, because the
playlist operator has to decode all the files of the library into internal raw
contents, and the output.file operator has to encode the stream in mp3, which
is quite cpu hungry. If our music library already consists of mp3 files, it is much
more efficient to avoid decoding and then reencoding the files. In order to do so,
we can use the FFmpeg encoder, by replacing the last line with

fmt = %ffmpeg(format="mp3", %audio.copy)

output.file(fallible=true, on_stop=shutdown, fmt, "/tmp/music.mp3", s)

Here, the encoder fmt states that we want to use the FFmpeg library, in order to
create mp3, from already encoded audio (%audio.copy). In this case, the source s

will have the type

source(audio=ffmpeg.audio.copy, video=none, midi=none)

where the contents of the audio is already encoded. Because of this, the playlist
operator will not try to decode the mp3 files, it will simply pass their data on,
and the encoder in output.file will simply copy them in the output file, thus
resulting in a much more efficient script. More details can be found in section 6.7.

8.2 Frames

At this point, we think that it is important to explain a bit how streams are
handled “under the hood”, even though you should never have to explicitly
deal with this in practice. After parsing a script, Liquidsoap starts one or more
streaming loops. Each streaming loop is responsible for creating audio data
from the inputs, pass it through the various operators and, finally, send it to

8.2. FRAMES 241

the outputs. Those streaming loops are animated by clocks: each operator is
attached to such a clock, which ensures that data is produced regularly. This
section details this way of functioning.

Frames. For performance reasons, the data contained in streams is generated
in small chunks, that we call frames in Liquidsoap. The default size of a frame
is controlled by the frame.duration setting whose default value is 0.04 second,
i.e. 1/25 th of a second. This corresponds to 1764 audio samples and 1 video
image with default settings. The actual duration is detailed at the beginning of
the logs:

Frames last 0.04s = 1764 audio samples = 1 video samples = 1764 ticks.

Changing the size. The size of frames can be changed by instructions such as

settings.frame.duration := 0.12

Note that if you request a duration of 0.06 second, by

settings.frame.duration := 0.06

you will see that Liquidsoap actually selects a frame duration of 0.08 seconds:

Frames last 0.08s = 3528 audio samples = 2 video samples = 3528 ticks.

this is because the requested size is rounded up so that we can fit an integer
number of samples and images (0.06 would have amounted to 1.5 image per
frame).

Pulling frames. In a typical script, such as

s = sine()

s = amplify(0.5, s)

output.pulseaudio(s)

The active source is output.pulseaudio, and is responsible for the generation of
frames. In practice, it waits for the soundcard to say: “hey, my internal buffer is
almost empty, now is a good time to fill me in!”. Each time this happens, and
this occurs 25 times per second, the active source generates a frame, which is
a buffer for audio (or video) data waiting to be filled in, and passes it to the
amplify source asking it to fill it in. In turn, it will pass it to the sine source,
which will fill it with a sine, then the amplify source will modify its volume, and
then the output.pulseaudio source will send it to the soundcard. Note that, for
performance reasons, all the operators work directly on the same buffer.

Assumptions on frame size. The frame duration is always supposed to be “small”
so that values can be considered to be constant over a frame. For this reason,
and in order to gain performance, expressions are evaluated only once at the

242 CHAPTER 8. A STREAMING LANGUAGE

beginning of each frame. For instance, the following script plays music at a
random volume:

s = playlist("~/Music")

s = amplify({random.float()}, s)

output(s)

In fact, the random number for the volume is only generated once for the whole
frame. This can be heard if you try to run the above script by setting the frame
duration to a “large” number such as 1 second:

settings.frame.duration := 1.

You should be able to clearly hear that volume changes only once every second.
In practice, with the default duration of a frame, this cannot be noticed. It can
be sometimes useful to increase it a bit (but not as much as 1 second) in order to
improve the performance of scripts, at the cost of decreasing the precision of
computed values.

Triggering computations on frames. It is possible to trigger a computation on
every frame, with the source.on_frame operator, which takes in addition to a
source, a function which is called every time a new frame is computed. For
instance, the following script will increase the volume of the source s by 0.01 on
every frame:

v = ref(0.)

s = source.on_frame(s, {v := v() + 0.01})

s = amplify(v, s)

The default size of a frame being 0.04 s, volume will progressively be increased
by 0.25 each second.

Frame raw contents. Let us provide some more details about the way data is
usually stored in those frames, when using raw internal contents, which is the
case most of the time. Each frame has room for audio, video and midi data, the
format of this data we now describe.

Audio. The raw audio contents is called pcm for pulse-code modulation. The signal
is represented by a sequence of samples, one for each channel, which represent
the amplitude of the signal at a given instant. Each sample is represented by
floating point number, between -1 and 1, stored in double precision (using 64
bits, or 8 bytes). The samples are given regularly for each channel of the signal,
by default 44100 times per seconds: this value is called the sample rate of the
signal and is stored globally in the frame.audio.samplerate setting. This means
that we can retrieve the value of the samplerate with

f = settings.frame.audio.samplerate()

8.2. FRAMES 243

and set it to another value such as 48000 with

settings.frame.audio.samplerate := 48000

although default samplerate of 44100 Hz is largely the most commonly in use.

Video. A video consists of a sequence images provided at regular interval. By
default, these images are presented at the frame rate of 25 images per second,
but this can be changed using the setting frame.video.framerate similarly as
above. Each image consists of a rectangle of pixels: its default width and height
are 1280 and 720 respectively (this corresponds to the resolution called 720p
or HD ready, which features an aspect ratio of 16:9 as commonly found on
television or computer screens), and those values can be changed through the
settings frame.video.width and frame.video.height. For instance, full HD or
1080p format would be achieved with

settings.frame.video.width := 1980

settings.frame.video.height := 1080

Each pixel has a color and a transparency, also sometimes called an alpha

channel: this last parameter specifies how opaque the pixels is and is used when
superimposing two images (the less opaque a pixel of the above image is, the
more you will see the pixels below it). Traditionally, the color would be coded in
rgb, consisting of the values for the intensity of the red, green and blue for each
pixel. However, if we did things in this way, every pixel would take 4 bytes (1
byte for each color and 1 for transparency), which means 4×1280×720×25 bytes
(= 87 Mb) of video per seconds, which is too much to handle in realtime for a
standard computer. For this reason, instead using the rgb representation, we use
the yuv representation consisting of one luma channel Y (roughly, the black and
white component of the image) and two chroma channels U and V (roughly, the
color part of the image represented as blueness and redness). Moreover, since
the human eye is not very sensitive to chroma variations, we can be less precise
for those and take the same U and V values for 4 neighboring pixels. This means
that each pixel is now encoded by 2.5 bytes on average (1 for Y, ¼ for U, ¼ for V
and 1 for alpha) and 1 second of typical video is down to a more reasonable 54
Mb per second. You should now understand why the internal contents for video
is called yuva420p in source types.

MIDI. midi stands forMusical Instrument Digital Interface and is a (or, rather, the)
standard for communicating between various digital instruments and devices.
Liquidsoap mostly follows it and encodes data as lists of events together with the
time (in ticks, relative to the beginning of the frame) they occur and the channel
on which they occur. Each event can be “such note is starting to play at such
velocity”, “such note is stopping to play”, “the value of such controller changed”,
etc.

244 CHAPTER 8. A STREAMING LANGUAGE

Encoded contents. As indicated in section 6.7, the data present in frames is not
always in the above format. Namely, Liquidsoap also has support for frames
whose contents is stored either in a format supported by the FFmpeg library,
which can consist of encoded streams (e.g. audio in the mp3 format).

Ticks. The time at which something occurs in a frame is measured in a custom
unit which we call ticks. To avoid errors due to rounding, which tend to accu-
mulate when performing computations with float numbers, we want to measure
time with integers. The first natural choice would thus be to measure time in
audio samples, since they have the highest rate, and in fact this is what is done
with default settings: 1 tick = 1 audio sample = 1/44100 second. In this case, an
image lasts 1/25 second = 44100/25 ticks = 1764 ticks.

However, if we change the video framerate to 24 images per second with

settings.frame.video.framerate := 24

we have difficulties measuring time with integers because an image now lasts
44100/24 samples = 1837.5 samples, which is not an integral number. In this case,
Liquidsoap conventionally decides that 1 sample = 2 ticks, so that an image lasts
3675 ticks. Indeed, if you try the above, you will see in the logs

Using 44100Hz audio, 24Hz video, 88200Hz main.

which means that there are 44100 audio samples, 24 images and 88200 ticks per
second. You will also see in the logs

Frames last 0.08s = 3675 audio samples = 2 video samples = 7350 ticks.

which means that a frame lasts 0.8 seconds and contains 8675 audio samples and
2 video samples, which corresponds to 7350 ticks. More generally, the number
of ticks per second as the smallest number such that both an audio and a video
sample lasts for an integer number of ticks.

Tracks andmetadata. Each frame contains two additional arrays of data which
are timed, in ticks relative to the beginning of the frame: breaks and metadata.

Tracks. It might happen that a source cannot entirely fill the current frame. For
instance, in the case of a source playing one file once (e.g. using the operator
once), where there are only 0.02 seconds of audio left whereas the frame lasts
0.04 seconds. We could have simply ignored this and filled the last 0.02 seconds
with silence, but we are not like this at Liquidsoap, especially since even such a
short period of a silence can clearly be heard. Don’t believe us? You can try the
following script which sets up the frame size to 0.02 seconds and then silences
the audio for one frame every second:

video.frame.rate := 50

frame.duration := 0.02

8.2. FRAMES 245

s = playlist("~/Music")

s = amplify({ (s.time() mod 1. <= 0.02) ? 0. : 1. }, s)

output(s)

You should clearly be able to hear a tick every second if the played music files
are loud enough. For this reason, if a source cannot fill the frame entirely, it
indicates it by adding a break, which marks the position until where the frame
has been filled. If the frame is not complete, it will try to fill the rest on the next
iteration of filling frames.

Each filling operation is required to add exactly one break. In a typical execution,
the break will be at the end of the frame. If this is not the case, this means
that the source could not entirely fill the frame, and this is thus considered as a
track boundary. In Liquidsoap, tracks are encoded as breaks in frames which
are not at the end: this mechanism is typically used to mark the limit between
two successive songs in a stream. In scripts, you can detect when a track occurs
using the on_track method that all sources have, and you can insert track by
using the method provided by the insert_metadata function.

Metadata. A frame can also contain metadata which are pairs of strings
(e.g. "artist", "Alizée" or "title", "Moi... Lolita", etc.) together with the
position in the frame where they should be attached. Typically, this information
is present in files (e.g. mp3 files contain metadata encoded in ID3 format) and
are passed on into Liquidsoap streams (e.g. when using the playlist operator).
They are also used by output operators such as output.icecast to provide
information about the currently playing song to the listener. In scripts, you can
trigger a function when metadata is present with on_metadata, transform the
metadata with metadata.map and add new metadata with insert_metadata. For
instance, you can print the metadata contained in tracks:

s = playlist("~/Music")

def print_metadata(m)

list.iter(fun (lv) -> print("- #{fst(lv)}: #{snd(lv)}"), m)

end

s.on_metadata(print_metadata)

output(s)

If you have a look at a typical stream, you will recognize the usual information
you would expect (artist, title, album, year, etc.). But you should also notice that
Liquidsoap adds internal information such as

• filename: the name of the file being played,
• temporary: whether the file is temporary, i.e. has been downloaded from
the internet and should be deleted after having been played,

• source: the name of the source which has produced the stream,
• kind: the kind (i.e. the contents of audio, video and midi) of the stream,
• on_air: the time at which it has been put on air, i.e. first played.

246 CHAPTER 8. A STREAMING LANGUAGE

These are added when resolving requests, as detailed below. In order to prevent
internal information leaks (we do not want our listeners to know about our
filenames for instance), the metadata are filtered before being sent to outputs:
this is controlled by the "encoder.encoder.export" setting, which contain the
list of metadata which will be exported, and whose default value is

["artist", "title", "album", "genre", "date", "tracknumber",

"comment", "track", "year", "dj", "next"]

8.3 The streaming model

The stream generation workflow. When starting the script, Liquidsoap be-
gins with a creation phase which instantiates each source and computes its
parameters by propagating information from the sources it uses. The two main
characteristics determined for each source are

• fallibility: we determine whether the source is fallible, i.e. might be unable
to produce its stream at some point (this is detailed below),

• clocks: we determine whether the source is synchronized by using the cpu
or has its own way of keeping synced, e.g. using the internal clock of a
soundcard (this is also detailed below).

Lifecycle of a source. The standard lifecycle of a source is the following one:

• we first inform the source that we are going to use it (we also say that we
activate it) by asking it to get ready, which triggers its initialization,

• then we repeatedly ask it for frames,
• and finally, when the script shuts down, we leave the source, indicating
that we are not going to need it anymore.

The information always flows from outputs to inputs. For instance, in a simple
script such as

s = playlist("~/Music")

s = amplify(0.8, s)

output(s)

at beginning Liquidsoap will ask the output to get ready, in turn the output will
ask the amplification operator to get ready, which will in turn ask the playlist to
get ready (and leaving would be performed similarly, as well as the computation
of frames as explained above). Note that a given source might be asked multiple
times to get ready, for instance if it is used by two outputs (typically, an Icecast
output and an hls output). The first time it is asked to get ready, the source
wakes up at which point it sets up what it needs (and dually, the last time it is
asked to leave, the source goes to sleep where it cleans up everything). Typically,
an input.http source, will start polling the distant stream at wake up time, and
stop at sleep time.

8.3. THE STREAMING MODEL 247

You can observe this in the logs (you need to set your log level to least 5): when
a source wakes up it emits a message of the form

Source xxx gets up ...

and when it goes to sleep it emits

Source xxx gets down.

where xxx is the identifier of the source (which can be changed by passing an
argument labeled id when creating the source). You can also determine whether
a source has been woken up, by using the method is_up which is present for
any source s: calling s.is_up() will return a boolean indicating whether the
source s is up or not. For instance,

s = playlist("~/Music")

thread.run(delay=1., { print("Source s is up: #{s.is_up()}.") })

will print, after 1 second, whether the playlist source is up or not (in this example
it will always be the case).

Computing the kind, again. When waking up, the source also determines its kind,
that is the number and nature of audio, video and midi channels as presented
above. This might seem surprising because this information is already present
in the type of sources, as explained above. However, for efficiency reasons, we
drop types during execution, which means that we do not have access to this
and have to compute it again (this is only done once at startup and is quite
inexpensive anyway): some sources need this information in order to know in
which format they should generate the stream or decode data. The computation
of the kind is performed in two phases: we first determine the content kind

which are the necessary constraints (e.g. we need at least one channel of pcm
audio), and then we determine the content type where all the contents are fixed
(e.g. we need two channels of pcm audio). When a source gets up it displays in
the logs the requested content kind for the output, e.g.

Source xxx gets up with content kind:

{audio=pcm,video=internal,midi=internal}.↪→

which states that the source will produce pcm audio (but without specifying the
number of channels), and video and midi in internal format. Later on, you can
see lines such as

Content kind: {audio=pcm,video=internal,midi=internal},

content type: {audio=pcm(stereo),video=none,midi=none}

which mean that the content kind is the one described above and that the content
type has been fixed to two channels of pcm audio, no video nor midi.

248 CHAPTER 8. A STREAMING LANGUAGE

The streaming loop. As explained above, once the initialization phase is over, the
outputs regularly ask the sources they should play to fill in frames: this is called
the streaming loop. Typically, in a script of the form

s = switch([({6h-10h},morning), ({true},default)])

s = amplify(0.8, s)

output.icecast(%mp3, mount="...", s)

the Icecast output will ask the amplification operator to fill in a frame, which
will trigger the switch to fill in a frame, which will require either the morning

or default source to produce a frame depending on the time. For performance
reasons, we want to avoid copies of data, and the computations are performed
in place, which means that each operator directly modifies the frame produced
by its source, e.g. the amplification operator directly changes the volume in the
frame produced by the switch.

Since the computation of frames is triggered by outputs, when a source is shared
by two outputs, at each round it will be asked twice to fill a frame (once by each
source). For instance, consider the following script:

s = amplify(0.5, sine())

output.pulseaudio(s)

output.icecast(%mp3, mount="stream", s)

Here, the source s is used twice: once by the PulseAudio output and once by the
Icecast output. Liquidsoap detects such cases and goes into caching mode: when
the first active source (say, output.pulseaudio) asks amplify to fill in a frame,
Liquidsoap will temporarily store the result (we say that it “caches” it, in what
we call a memo frame) so that when the second active source asks amplify to
fill in the frame, the stored one will be reused, thus avoiding computing twice a
frame which would be disastrous (each output would have one frame every two
computed frames).

Fallibility. Some sources can fail, which means that they do not have a sensible
stream to produce at some point. This typically happens after ending a track
when there is no more track to play. For instance, the following source s will
play the file test.mp3 once:

s = once(single("test.mp3"))

After the file has been played, there is nothing to play and the source fails.
Internally, each source has a method to indicate whether it is ready, i.e. whether
it has something to play. Typically, this information is used by the fallback

operator in order to play the first source which is ready. For instance, the
following source will try to play the source s, or a sine if s is not ready:

t = fallback([s, sine()])

8.3. THE STREAMING MODEL 249

In Liquidsoap scripts, every source has a method is_ready which can be used to
determined whether it has something to play.

On startup, Liquidsoap ensures that the sources used in outputs never fail
(unless the parameter fallible=true is passed to the output). This is done by
propagating fallibility information from sources to sources. For instance, we
know that a blank source or a single source will never fail (for the latter, this is
because we download the requested file at startup), input.http is always fallible
because the network might go down, a source amplify(s) has the same fallibility
as s, and so on. Typically, if you try to execute the script

s = input.http("http://...")

output.pulseaudio(s)

Liquidsoap will issue the error

Error 7: Invalid value: That source is fallible

indicating that it has determined that we are trying to play the source s, which
might fail. The way to fix this is to use the fallback operator in order to play a
file which is always going to be available in case s falls down:

s = input.http("http://...")

emergency = single("/radio/emergency.mp3")

s = fallback(track_sensitive=false, [s, emergency])

output.pulseaudio(s)

Or to use mksafe which is defined by

def mksafe(s)

fallback(track_sensitive=false, [s, blank()])

end

and will play blank in case the input source is down.

The “worse” sourcewith respect to fallibility is given by the operator source.fail,
which creates a source which is never ready. This is sometimes useful in order
to code elaborate operators. For instance, the operator once is defined from the
sequence operator (which plays one track from each source in a list) by

def once(s)

sequence([s, source.fail()])

end

Another operator which is related to fallibility is max_duration which makes a
source unavailable after some fixed amount of time.

Clocks. Every source is attached to a particular a clock, which is fixed during
the whole execution of the script, and is responsible for determining when the
next frame should be computed: at regular intervals, the clock will ask active

250 CHAPTER 8. A STREAMING LANGUAGE

sources it controls to generate frames. We have said that a frame lasts for 0.04
seconds by default, which means that a new frame should be computed every
0.04 seconds, or 25 times per second. The clock is responsible for measuring the
time so that this happens at the right rate.

Multiple clocks. The first reason why there can be multiple clocks is external:
there is simply no such thing as a canonical notion of time in the real world.
Your computer has an internal clock which indicates a slightly different time
than your watch or another computer’s clock. Moreover, when communicating
with a remote computer, network latency causes extra time distortions. Even
within a single computer there are several clocks: notably, each soundcard has
its own clock, which will tick at a slightly different rate than the main clock of
the computer, and each sound library makes a different use of the soundcard.
For applications such as radios, which are supposed to run for a very long time,
this is a problem. A discrepancy of 1 millisecond every second will accumulate
to a difference of 43 minutes after a month: this means that at some point in the
month we will have to insert 43 minutes of silence or cut 43 minutes of music in
order to synchronize back the two clocks! The use of clocks allows Liquidsoap
to detect such situations and require the user to deal with them. In practice, this
means that each library (alsa, Pulseaudio, etc.) has to be attached to its own
clock, as well as network libraries taking care of synchronization by themselves
(srt).

There are also some reasons that are purely internal to Liquidsoap: in order
to produce a stream at a given rate, a source might need to obtain data from
another source at a different rate. This is obvious for an operator that speeds up
or slows down audio, such as stretch. But it also holds more subtly for operators
such as cross, which is responsible for crossfading successive tracks in a source:
during the lapse of time where the operator combines data from an end of track
with the beginning of the next one, the crossing operator needs twice as much
stream data. After ten tracks, with a crossing duration of six seconds, one more
minute will have passed for the source compared to the time of the crossing
operator.

The use of clocks in Liquidsoap ensures that a given source will not be pulled
at two different rates by two operators. This guarantees that each source will
only have to sequentially produce data and never simultaneously produce data
for two different logical instants, which would be a nightmare to implement
correctly.

Observing clocks. Consider the following script:

s = input.alsa()

s = amplify(0.8, s)

output.file(%mp3, "/tmp/out.mp3", s)

8.3. THE STREAMING MODEL 251

Here, the only operator to enforce the use of a particular clock is input.alsa
and therefore its clock will be used for all the operators. Namely, we can observe
in the logs that input.alsa uses the alsa clock

[input.alsa_64610:5] Clock is alsa[].

and that the amplify operator is also using this clock

[amplify_64641:5] Clock is alsa[].

Once all the operators created and initialized, the clock will start its streaming

loop (i.e. produce a frame, wait for some time, produce another frame, wait for
some time, and so on):

[clock.alsa:3] Streaming loop starts in auto-sync mode

Here, we can see that alsa is taking care of the synchronization, this is indicated
by the message:

[clock.alsa:3] Delegating synchronisation to active sources

If we now consider a script where there is no source which enforces synchro-
nization such as

s = sine()

output.file(%mp3, "/tmp/out.mp3", s)

we can see in the logs that the cpu clock, which is called main, is used

[sine_64611:5] Clock is main[].

and that synchronization is taken care of by the cpu

[clock.main:3] Delegating synchronisation to CPU clock

Graphical representation. In case it helps to visualize clocks, a script can be
drawn as some sort of graph whose vertices are the operators and there is an
arrow from a vertex op to a vertex op' when the operator op' uses the stream
produced by the operator op. For instance, a script such as

output(fallback([crossfade(playlist(...)), jingles]))

can be represented as the following graph:

playlist crossfade fallback

jingles

output

clock2

clock1

252 CHAPTER 8. A STREAMING LANGUAGE

The dotted boxes on this graph represent clocks: all the nodes in a box are
operators which belong to the same clock. Here, we see that the playlist

operator has to be in its own clock clock2, because it can be manipulated in
a non-linear way by the crossfade operator in order to compute transitions,
whereas all other operators belong the same clock clock1 and will produce their
stream at the same rate.

Errors with clocks. At startup Liquidsoap assigns a clock to each operator by
applying the three following rules:

1. we should follow the clock imposed by operators which have special
requirements:

• input.alsa and output.alsa have to be in the alsa clock,
input.pulseaudio and output.pulseaudio have to be in the
pulseaudio clock, etc.,

• the sources used by stretch, cross and few other “time-sensitive”
operators have their own clock,

• the operator clock generates a new clock,
2. each operator should have the same clock as the sources it is using (unless

for special operators such as cross or buffer): this called clock unification,
3. if the two above rules do not impose a clock to an operator, it is assigned

to the default clock main, which based on cpu.

It should always be the case that a given operator belongs to exactly one clock.
If, by applying the above rules, we discover that an operator should belong to
two (or more) clocks, we raise an error. For instance, the script

output.alsa(s)

output.pulseaudio(s)

will raise at startup the error

A source cannot belong to two clocks (alsa[], pulseaudio[]).

because the source s should be both in the alsa and in the pulseaudio clock,
which is forbidden. This is for a good reason: the alsa and the Pulseaudio
libraries each have their own way of synchronizing streams and might lead to
the source s being pulled at two different rates. Similarly, the script

o = add([stretch(ratio=2., s), s])

will raise the error

Cannot unify two nested clocks (resample_65223[],

?(3f894ac2d35c:0)[resample_65223[]]).↪→

because the source s should belong to the clock used by stretch and the clock
of stretch. When we think about it the reason should be clear: we are trying
to add the source s played at normal speed and at a speed slowed down twice.

8.3. THE STREAMING MODEL 253

This means that in order to compute the stream o at a given time t, we need to
know the stream s both at time t and at time t/2, which is forbidden because we
only want to compute a source at one logical instant.

Mediating between clocks: buffers. As we have seen in section 6.10, the usual
way to handle clock problems is to use buffer operators (either buffer of
buffer.adaptative): they record in a buffer some of their input source before
outputting it (1 second by default), so that it can easily cope with small time
discrepancies. Because of this, we allow that the clock of their argument and
their clocks are different.

For instance, we have seen that the script

output.alsa(s)

output.pulseaudio(s)

is not allowed because it would require s to belong to two distinct clocks. Graph-
ically,

s

output.alsa output.pulseaudio

alsa
pulseaudio

The easy way to solve this is to insert a buffer operator before one of the two
outputs, say output.alsa:

output.alsa(fallible=true, buffer(s))

output.pulseaudio(s)

which allows having two distinct clocks at the input and the output of buffer
and thus two distinct clocks for the whole script:

s

buffer

output.alsa

output.pulseaudio

alsa

pulseaudio

Catching up. We have indicated that, by default, a frame is computed every 0.04
second. In some situations, the generation of the frame could take more than

254 CHAPTER 8. A STREAMING LANGUAGE

this: for instance, we might fetch the stream over the internet and there might
be a problem with the connection, or we are using very cpu intensive audio
effects, and so on. What happens in this case? If this is for a very short period
of time, nothing: there are buffers at various places, which store the stream in
advance in order to cope with this kind of problems. If the situation persists,
those buffer will empty and we will run into trouble: there is not enough audio
data to play and we will regularly hear no sound.

This can be tested with the sleeper operator, which can be used to simulate
various audio delays. Namely, the following script simulates a source which
takes roughly 1.1 second to generate 1 second of sound:

s = sleeper(delay=1.1, sine())

output(s)

When playing it you should hear regular glitches and see messages such as

2020/07/29 11:13:05 [clock.pulseaudio:2] We must catchup 0.86 seconds!

This means Liquidsoap took n+0.86 seconds to produce n seconds of audio, and
is thus “late”. In such a situation, it will try to produce audio faster than realtime
in order to “catch up” the delay.

Coping witch catch up errors. How can we cope with this kind of situations?
Again, buffers are a solution to handle temporary disturbances in production
of streams for sources. You can explicitly add some in you script by using the
buffer operator: for instance, in the above script, we would add before the
output, the line

s = buffer(s)

which make the source store 1 second of audio (this duration can be configured
with the buffer parameter) and thus bear with delays of less than 1 second.

A more satisfactory way to fix this consists in identifying the cause of the delay,
but we cannot provide a general answer for this, since it largely depends on your
particular script. The only general comment we can make is that something is
taking time to compute at some point. It could be that your cpu is overloaded
and you should reduce the number of effects, streams or simultaneous encodings.
It could also come from the fact that you are performing operations such as
requests over the internet, which typically take time. For instance, we have seen
in section 6.8 that we can send the metadata of each track to a website with a
script such as

radio = playlist("~/Music")

def handle_metadata(m)

_ = http.post(data=metadata.json.stringify(m),

headers=[("Content-Type", "application/json; charset=UTF-8")],

"http://our.website.com/update_metadata.php")

8.4. REQUESTS 255

end

radio.on_track(handle_metadata)

which uses http.post to post the metadata of each track to a distant server.
Since the connection to the server can take time, it is much better to perform
it in a separate thread, which will run in parallel to the computation of the
stream, without inducing delay in it. This can be performed by calling the
handle_metadata with the thread.run function, i.e. replace the last line above by

radio.on_track(fun(m) -> thread.run({handle_metadata(m)}))

A last way of dealing with the situation is by simply ignoring it. If the only
thing which is disturbing you is the error messages that pollute your log and not
the error itself, you can have fewer messages by changing the clock.log_delay

setting which controls how often the “catchup” error message is displayed. For
instance, with

settings.clock.log_delay := 60.

you will only see one every minute.

8.4 Requests

When passing something to play to an operator, such as test.mp3 to the operator
single,

s = single("file.mp3")

it seems that the operator can simply open the file and play it on the go. However,
things are a bit more complicated in practice. Firstly, we have to actually get the
file:

• the file might be a distant file (e.g. http://some.server/file.mp3 or
ftp://some.server/file.mp3), in which case we want to download it
beforehand in order to ensure that we have a valid file and that we will
not be affected by the network,

• the “file” might actually be more like a recipe to produce the file (for
instance say:Hello you, means that we should take some text-to-speech
program to generate a sound file with the text Hello you).

Secondly, we have to find a way to decode the file

• we have to guess what format it is, based on the header of the file and its
extension,

• we have to make sure that the file is valid and find a decoder, i.e. some
library that we support which is able to decode it,

• we have to read the metadata of the file

Finally, we have to perform some cleanup after the file has been played:

256 CHAPTER 8. A STREAMING LANGUAGE

• the decoder should be cleanly stopped,
• temporary files (such as downloaded files) have to be removed.

Also note that the decoder depends on the kind of source we want to produce:
for instance, an mp3 file will not be acceptable if we are trying to generate video,
but will of course be if we are trying to produce audio only.

For those reasons, most operators (such as single, playlist, etc.) do not directly
deal with files, but rather with requests. Namely, a request is an abstraction
which allows manipulating files but also performing the above operations.

Requests. A request is something from which we can eventually produce a file.

URI. It starts with an uri (Uniform Resource Identifier), such as

• /path/to/file.mp3

• http://some.server/file.mp3

• annotate:title="My song",artist="The artist":~/myfile.mp3

• replaygain:/some/file.mp3

• say:This is my song

• synth:shape=sine,frequency=440.,duration=10.

• . . .

As you can see the uri is far from always being the path to a file. The part
before the first colons (:) is the protocol and is used to determine how to fetch
or produce the file. A local file is assumed when no protocol is specified. Some
protocols such as annotate or replaygain operate on uri, which means that they
allow chaining of protocols so that

replaygain:annotate:title="Welcome":say:Hello everybody!

is a valid request.

The status of a request. When a request is created it is assigned a rid, for request
identifier, which is a number which uniquely identifies it (in practice the first
request has rid 0, the second one rid 1, and so on). Each request also has a
status which indicate where it is in its lifecycle:

1. idle: this is the initial status of a request which was just created,
2. resolving: we are generating an actual file for the request,
3. read: the request is ready to be played,
4. playing: the request is currently being played by an operator,
5. destroyed: the request has been played and destroyed (it should not be

used anymore).

Resolution. The process of generating a file from a request is called resolving the
request. The protocol specifies the details of this process, which is done in two
steps:

8.4. REQUESTS 257

1. some computations are performed (e.g. sound in produced by a text-to-
speech library for say),

2. a list of uri, called indicators, is returned.

Generally, only one uri is returned: for instance, the say protocol generates
audio in a temporary file and returns the path to the file it produced. When
multiple uri are returned, Liquidsoap is free to pick any of them and will actually
pick the first working one. Typically, a “database” protocol could return multiple
locations of a given file on multiple servers for increased resiliency.

When a request is indicated as persistent is can be played multiple times (this is
typically the case for local files). Otherwise, a request should only be used once.
Internally, with every indicator is also associated the information of whether it
is temporary or not. If it is, the file is removed when the request is destroyed.
For instance, the say protocol generates the text in a temporary file, which we
do not need after it has been played.

When resolving the request, after a file has been generated, Liquidsoap also
ensures basic checks on data and computes associated information:

• we read the metadata in the file (and convert those to the standard utf-8
encoding for characters),

• we find a library to decode the file (a decoder).

The resolution of a request may fail if the protocol did not manage to successfully
generate a file (for instance, a database protocol used with a query which did
not return any result) or if no decoder could be found (either the data is invalid
or the format is not supported).

Manipulating requests. Requests can be manipulated within the language with
the following functions.

• request.create creates a request from an uri. It can be specified to be
persistent or temporary with the associated arguments. Beware that
temporary files are removed after they have been played so that you
should use this with care.

• request.resolve forces the resolution of a request. This function returns a
boolean indicating whether the resolution succeeded or not. The timeout

argument specifies how much time we should wait before aborting (reso-
lution can take long, for instance when downloading a large file from a
distant server). The content_type argument indicates a source with the
same content type (number and kind of audio and video channels) as
the source for which we would like to play the request: the resolution
depends on it (for instance, we cannot decode an mp3 file to produce
video. . .). Resolving twice does not hurt: resolution will simply not do
anything the second time.

258 CHAPTER 8. A STREAMING LANGUAGE

• request.destroy indicates that the request will not be used anymore and
associated resources can be freed (typically, we remove temporary files).

• request.id returns the rid of the request.
• request.status returns the current status of a request (idle, resolving,
ready, playing or destroyed) and request.ready indicates whether a re-
quest is ready to play.

• request.uri returns the initial uri which was used to create the request
and request.filename returns the file to which the request resolved.

• request.duration returns the (estimated) duration of the request in sec-
onds.

• request.metadata returns the metadata associated to request. This meta-
data is automatically read when resolving the file with a specified content
type. The function request.read_metadata can be used to force reading
the metadata in the case we have a local file.

• request.log returns the log associated to a particular request. It is useful
in order to understand why a request failed to resolve and can also be
obtained by using the request.trace telnet command.

Requests can be played using operators such as

• request.queue which plays a dynamic queue of requests,
• request.dynamic which plays a sequence of dynamically generated re-
quests,

• request.once which plays a request once.

Those operators take care of resolving the requests before using them and
destroying them afterward.

Metadata. When resolving requests, Liquidsoap inserts metadata in addition
to the metadata already contained in the files. This can be observed with the
following script:

r = request.create("test.mp3")

print(request.metadata(r))

Here, we are creating a request from a file path test.mp3. Since we did not
resolve the request, the metadata of the file has not been read yet. However, the
request still contains metadata indicating internal information about it. Namely,
the script prints:

[("filename", "test.mp3"), ("temporary", "false"),

("initial_uri", "test.mp3"), ("status", "idle"), ("rid", "0")]

The meaning of the metadata should be obvious:

• rid is the identifier of the request,
• status is the status of the request,
• initial_uri is the uri we used to create the request,

8.4. REQUESTS 259

• filename is the file the request resolved to (here, already had a local file
so that it does not change)

• temporary indicates whether the file is temporary or not.

Protocols. The list of protocols available in Liquidsoap for resolving requests can
be obtained by typing the command

liquidsoap --list-protocols-md

on on the website1. The documentation also indicates which protocol are static:
for those, the same uri should always produce the same result, and Liquidsoap
can use this information in order to optimize the resolution.

Some of those protocols are built in the language such as

• http and https to download distant files over http,
• annotate to add metadata.

Some other protocols are defined in the standard library (in the file
protocols.liq) using the protocol.add function which registers a new protocol.
This function takes as argument a function proto of type

(rlog : ((string) -> unit), maxtime : float, string) -> [string]

which indicates how to perform the resolution: this function takes as arguments

• rlog a function to write in the request’s log,
• maxtime the maximal duration resolution should take,
• the uri to resolve,

and returns a list of uri it resolves to. Additionally, the function protocol.add

takes arguments to document the function (syntax describes the uri accepted by
this protocol and doc is freeform description of the protocol) as well as indicate
whether the protocol is static or not and whether the files it produces are
temporary or not.

Request leaks. At any time, a given script should only have a few requests alive.
For instance, a playlist operator has a request for the currently playing file
and perhaps for a few files in advance, but certainly not for the whole playlist:
if the playlist contained distant files, this would mean that we would have to
download them all before starting to play. Because of this, Liquidsoap warns
you when there are hundreds of requests alive: this either mean that you are
constantly creating requests, or that they are not properly destroyed (what we
call a request leak). For instance, the following script creates 250 requests at
once:

def loop()

for i = 1 to 250 do

1https://www.liquidsoap.info/doc-dev/protocols.html

https://www.liquidsoap.info/doc-dev/protocols.html

260 CHAPTER 8. A STREAMING LANGUAGE

ignore(request.create("test.mp3"))

end

end

thread.run(delay=1., loop)

Consequently, you will therefore see in the logs messages such as

2021/05/04 12:22:18 [request:2] There are currently 100 RIDs, possible

request leak! Please check that you don't have a loop on

empty/unavailable requests, or creating requests without destroying

them. Decreasing request.grace_time can also help.

↪→

↪→

↪→

2021/05/04 12:22:18 [request:2] There are currently 200 RIDs, possible

request leak! Please check that you don't have a loop on

empty/unavailable requests, or creating requests without destroying

them. Decreasing request.grace_time can also help.

↪→

↪→

↪→

Decoders. As mentioned above, the process of resolving requests involves
finding an appropriate decoder.

Configuration. The list of available decoders can be obtained with the script

print(settings.decoder.decoders())

which prints here

["WAV", "AIFF", "PCM/BASIC", "MIDI", "IMAGE", "RAW AUDIO", "FFMPEG",

"FLAC", "AAC", "MP4", "OGG", "MAD", "GSTREAMER"]↪→

indicating the available decoders. The choice of the decoder is performed on the
mime type (i.e. the detected type for the file) and the file extension. For each of
the decoders the configuration key

• decoder.mime_types.* specifies the list of mime types the decoder accepts,
• decoder.file_extension.* specifies the list of file extensions the decoder
accepts.

For instance, for the mad decoder (mad is a library to decode mp3 files) we have

settings.decoder.mime_types.mad := ["audio/mpeg","audio/MPA"]

settings.decoder.file_extensions.mad := ["mp3","mp2","mp1"]

Finally, the configuration key decoder.priorities.* specify the priority of the
decoder. For instance,

settings.decoder.priorities.mad := 1

The decoders with higher priorities are tried first, and the first decoder which
accepts a file is chosen. For mp3 files, this means that the FFmpeg decoder is
very likely to be used over mad, because it also accepts mp3 files but has priority
10 by default.

8.4. REQUESTS 261

Custom decoders. It is possible to add your custom decoders using the
add_decoder function, which registers an external program to decode some
audio files: this program should read the data on standard input and write
decoded audio in wav format on its standard output.

The log of a resolution. The choice of a decoder can be observed when setting
log level to debug. For instance, consider the simple script

log.level := 5

output(single("test.mp3"))

We see the following steps in the logs:

• the source single decides to resolve the request test.mp3:

[single_65193:3] "test.mp3" is static, resolving once for all...

[single_65193:5] Content kind: {audio=pcm,video=any,midi=any},

content type: {audio=pcm(stereo),video=none,midi=none}↪→

[request:5] Resolving request [[test.mp3]].

• some decoders are discarded because the extension or the mime are not
among those they support:

[decoder.ogg:4] Invalid file extension for "test.mp3"!

[decoder.ogg:4] Invalid MIME type for "test.mp3": audio/mpeg!

[decoder.mp4:4] Invalid file extension for "test.mp3"!

[decoder.mp4:4] Invalid MIME type for "test.mp3": audio/mpeg!

[decoder.aac:4] Invalid file extension for "test.mp3"!

[decoder.aac:4] Invalid MIME type for "test.mp3": audio/mpeg!

[decoder.flac:4] Invalid file extension for "test.mp3"!

[decoder.flac:4] Invalid MIME type for "test.mp3": audio/mpeg!

[decoder.aiff:4] Invalid file extension for "test.mp3"!

[decoder.aiff:4] Invalid MIME type for "test.mp3": audio/mpeg!

[decoder.wav:4] Invalid file extension for "test.mp3"!

[decoder.wav:4] Invalid MIME type for "test.mp3": audio/mpeg!

• two possible decoders are found, FFmpeg and mad, the first one having
priority 10 and the second one priority 1

[decoder:4] Available decoders: FFMPEG (priority: 10), MAD

(priority: 1)↪→

• the one with the highest priority is tried first, accepts the file, and is thus
selected:

[decoder.ffmpeg:4] ffmpeg recognizes "test.mp3" as: audio:

{codec: mp3, 48000Hz, 2 channel(s)} and content-type:

{audio=pcm(stereo),video=none,midi=none}.

↪→

↪→

262 CHAPTER 8. A STREAMING LANGUAGE

[decoder:4] Selected decoder FFMPEG for file "test.mp3" with

expected kind {audio=pcm(stereo),video=none,midi=none} and

detected content {audio=pcm(stereo),video=none,midi=none}

↪→

↪→

• the resolution process is over:

[request:5] Resolved to [[test.mp3]].

The log of a failed resolution. For comparison, consider the following variant of
the script

log.level := 5

output.video(single("test.mp3"))

Here, the resolution will fail because we are trying to play the source with
output.audio_video: this implies that the source should have video, which an
mp3 does not. The logs of the resolution process are as follows:

• the source single initiates the resolution of test.mp3:

[single_65193:3] "test.mp3" is static, resolving once for all...

[single_65193:5] Content kind:

{audio=any,video=yuva420p,midi=any}, content type:

{audio=pcm(stereo),video=yuva420p,midi=none}

↪→

↪→

[request:5] Resolving request [[test.mp3]].

You can observe that the content type has audio=pcm(stereo), which
means that we want stereo audio and video=yuva420p which means that
we want video,

• some decoders are discarded because the extension or mime is not sup-
ported:

[decoder.ogg:4] Invalid file extension for "test.mp3"!

[decoder.ogg:4] Invalid MIME type for "test.mp3": audio/mpeg!

• the FFmpeg decoder is tried (mad is not considered because it cannot
produce video):

[decoder:4] Available decoders: FFMPEG (priority: 10)

[decoder.ffmpeg:4] ffmpeg recognizes "test.mp3" as: audio:

{codec: mp3, 48000Hz, 2 channel(s)} and content-type:

{audio=pcm(stereo),video=none,midi=none}.

↪→

↪→

[decoder:4] Cannot decode file "test.mp3" with decoder FFMPEG.

Detected content: {audio=pcm(stereo),video=none,midi=none}↪→

we see that the decoder detects that the contents of the file is stereo audio
and no audio, consequently it refuses to decode the file because we are
requesting video,

8.4. REQUESTS 263

• not decoder was found for the file at the given content type and the
resolution process fails (an empty list of indicators is returned):

[decoder:3] Available decoders cannot decode "test.mp3" as

{audio=pcm(stereo),video=yuva420p,midi=none}↪→

[request:5] Resolved to [].

• the single operator raises a fatal exception because it could not resolved
the uri we asked for:

[clock.main:4] Error when starting graphics:

Request_simple.Invalid_URI("test.mp3")!↪→

Other libraries involved in the decoding of files. Apart from decoders, the following
additional libraries are involved when resolving and decoding requests.

• Metadata decoders: some decoders are dedicated to decoding the metadata
of the files.

• Duration decoders: some decoders are dedicated to computing the duration
of the files. Those are not enabled by default and can be by setting the
dedicated configuration key

settings.request.metadata_decoders.duration := true

The reason they are not enabled is that they can take quite some time
to compute the duration of a file. If you need this, it is rather advised to
precompute it and store the result in the duration metadata.

• Samplerate converters: those are libraries used to change the samplerate of
audio files when needed (e.g. converting files sampled at 48 kHz to default
44.1 kHz). The following configuration key sets the list of converters:

settings.audio.converter.samplerate.converters :=

["ffmpeg","libsamplerate","native"]

The first supported one is chosen. The native converter is fast and always
available, but its quality it not very good (correctly resampling audio
is a quite involved process), so that we recommend that you compile
Liquidsoap with FFmpeg or libsamplerate support.

• Channel layout converters: those convert between the supported audio
channel layouts (currently supported aremono, stereo and 5.1). Their order
can be changed with the audio.converter.channel_layout.converters

configuration key.

• Video converters: those convert between various video formats. The con-
verter to use can be changed by setting the video.converter.preferred

configuration key.

Custommetadata decoders can be addedwith the function add_metadata_resolver.

264 CHAPTER 8. A STREAMING LANGUAGE

8.5 Reading the source code

As indicated in section 6.10, a great way of learning about Liquidsoap, and adding
features to it, is to read (and modify) the standard library, which is written in
the Liquidsoap language detailed in chapter 5. However, in the case you need
to modify the internal behavior of Liquidsoap or chase an intricate bug you
might have to read (and modify) the code of Liquidsoap itself, which is written
in the OCaml language1. This can be a bit intimidating at first, but it is perfectly
doable with some motivation, and it might be reassuring to learn that some
other people have gone through this before you!

In order to guide you through the source, let us briefly describe the main folders
and files. All the files referred to here are in the src directory of the source,
where all the code lies. The main folders are

• language:
– lang/: the definition of language,
– builtins/: all the builtin operators,
– stream/: internal representation and manipulation of streams using

frames,
• operators:

– operators/: where most operators such as sound processing are,
– conversions/: conversion operators such as mean, source.drop.audio,

source.mux.audio, etc.
• inputs and outputs:

– io/: libraries performing both input and output such as alsa,
– sources/: input sources
– outputs/: outputs,

• file formats:
– decoder/, encoder_formats/ and encoder/: decoders and encoders

using various libraries for various formats and codecs,
– converters: audio samplerate and image formats converters,
– lang_encoders: support in the language for various encoders,

• protocols: protocols/.

The most important files are the following ones:

File Description
lang/parser.mly Syntax of the language
lang/term.ml Internal representation of programs
lang/values.ml Values computed by programs
lang/types.ml Types of the language
lang/typing.ml Operations on types
lang/typechecking.ml Typechecking of programs

1https://ocaml.org/

https://ocaml.org/

8.5. READING THE SOURCE CODE 265

File Description
lang/evaluation.ml Execution of programs
lang/runtime.ml Handling of errors
lang/lang.ml High-level operations on the language
stream/frame.ml Definition of frames for streams
stream/content.ml Internal contents of frames
sources.ml Definition of sources
clock.ml Definition of clocks
request.ml Definition of requests

Happy hacking, and remember that the community is here to help you!

266 CHAPTER 8. A STREAMING LANGUAGE

267

Bibliography

Baelde, David, Romain Beauxis, and Samuel Mimram. 2011. “Liquidsoap: A High-
Level Programming Language for Multimedia Streaming.” In International

Conference on Current Trends in Theory and Practice of Computer Science,
99–110. Springer. https://arxiv.org/abs/1104.2681.

Baelde, David, and Samuel Mimram. 2008. “De la webradio lambda à la λ-
webradio.” In JFLA (Journées Francophones des Langages Applicatifs), 47–62.
Étretat, France. http://hal.inria.fr/inria-00202813.

https://arxiv.org/abs/1104.2681
http://hal.inria.fr/inria-00202813

268

Index

->, 31, 55, 56
:=, 53
==, 46
?, 58
_, 52

AAC, 158
add, 101, 215, 237
alpha channel, 216
ALSA, 33
amplify, 60, 123
and, 46
annotate, 90, 107
append, 110
argument, 31

commandline, 74, 205
labeled, 57
optional, 57

argv, 74, 205
association list, 50
automatic gain control, 15, 75, 125
AV1, 226
availability, 197
AVI, 226

begin, 57
blank, 99, 126
blank, 34, 213

bool, 46
boolean, 46
BPM, 191, 219
buffer, 202, 253

catchup, 253
chat, 6
clipping, 128
clock, 14, 201, 249

unification, 252
codec, 11, 223
comment, 30
compress, 129
compressor, 10, 16, 129

multiband, 133
configuration, 70
container, 11, 223
contents, 78, 232, 247
cover, 214
cross, 119, 218
crossfade, 36, 116
crossfading, 16, 35, 217
cue point, 115
cue_cut, 115

DASH, 13
decibel, 16, 136
decoder, 260

INDEX 269

def, 51, 54, 65
delay, 103
discord, 6
Docker, 25
documentation, 41

editor, 41
encoded stream, 162, 234, 240
encoder, 37, 78, 152, 223, 239
equalizer, 16
error, 68
escaping, 44
exit, 74
external

encoder, 165
input, 97
program, 168

Facebook, 228
factorial, 64
fade, 116
fail, 110
fallback, 33, 99, 249
fallibility, 33, 78, 248
false, 46
FFmpeg, 19, 160, 220, 223, 234
file, 73

output, 149
watch, 173

filter, 130
video, 220

FLAC, 11, 157
float, 43
for, 54
frame, 241
frei0r, 220
fst, 50
fun, 56
function, 54

anonymous, 56
recursive, 64

gate, 16, 127
getter, 61, 137
git, 23

github, 6
GStreamer, 97, 159

H.264, 224
handler, 55
harbor, 93, 140, 145, 176, 183
help, 6
HLS, 13, 146
HTTP, 74, 182
http.get, 66, 182

Icecast, 12, 36, 144
if, 46
ignore, 52
image, 213
indicator, 257
input.alsa, 33, 92
input.ffmpeg, 97
input.harbor, 93
input.hls, 85
input.http, 85
input.jack, 98, 166
input.srt, 98
input.v4l2, 212
insert_metadata, 112, 180, 187
int, 43
integer, 43
interactive mode, 42
interactive variable, 62, 101, 138
interactive.harbor, 140
internal, 232

JACK, 166
JAMin, 166
jingle, 35, 102
JSON, 108, 172

kind, 232, 247

LADSPA, 134
let, 65
limit, 130
limiter, 16
list, 48

association, 50
list.tl, 59

270 INDEX

log, 29, 44, 193
loop, 54
LUFS, 76, 190
LV2, 134

max_duration, 249
metadata, 12, 50, 107, 245, 258

getter, 63
metadata.map, 111
method, 66
metrics, 190
metronome, 195
MIDI, 243
mksafe, 34, 99, 249
module, 65
MP3, 11, 153
mux, 217, 238

normalize, 36, 76, 124
not, 46
not_found, 68
nrj, 36
null, 69

OCaml, 2, 264
Ogg, 155
on_metadata, 108
on_track, 108, 185
once, 85, 104, 249
opam, 21
open, 65
operator, 54
Opus, 11, 155
or, 46
OSC, 18, 142
output, 29, 143
output.audio_video, 211
output.dummy, 143
output.file, 149
output.harbor, 145
output.icecast, 37, 144
output.jack, 166
output.srt, 151
output.url, 151

pair, 50

path, 73
pcm, 233, 242
pipe, 167
playlist, 32, 81, 212
playlog, 84
polymorphism, 59
predicate, 100

once, 105
signal, 106
time, 35, 100

prepend, 110
print, 44
process, 74, 168
process, 90
process.run, 168
profiler, 198
Prometheus, 192
protocol, 33, 89, 259
protocol.add, 91

queue, 18, 87, 186

random, 43
random, 35, 103
record, 65
recursive function, 64
ref, 52
reference, 52
regular expression, 45
ReplayGain, 15, 36, 123
request, 79, 256

resolution, 256, 261
request.dynamic, 85
request.player, 189
request.queue, 79, 87, 109, 174, 186
resampling, 15
resize, 216
resolution, 256, 261
restart, 74
RID, 256
RMS, 67, 190, 219
rotate, 35, 103
RTMP, 13

sample, 10

INDEX 271

sandbox, 170
savonet, 5
say, 89
scale, 216
script, 30
seek, 113
sequence, 102
server, 138, 174
server.hoarbor, 176
server.register, 179
shebang, 30
shutdown, 74
sine, 29, 194
single, 84, 211
singleop, 34
skip, 67, 113, 185
sleeper, 198, 254
smooth_add, 122
snd, 50
source, 29, 78, 231

active, 235
dynamic, 207
fallible, 33, 78, 248
methods, 200

source code, 264
source.available, 197
source.dynamic, 208
source.fail, 249
source.mux.video, 214
source.on_metadata, 55
Speex, 157
SRT, 98, 151
SSL, 95
standard library, 41, 199
Stereo Tool, 136, 168
string, 44

escaping, 44, 170
interpolation, 44

string, 45, 73
string.split, 45
switch, 35, 100, 187
synth, 195

telnet, 87, 101, 138, 174
text, 218

Theora, 226
thread, 75, 195
thread.run, 75
thread.when, 76
tick, 244
time, 77

predicate, 35, 100
time.string, 77, 149
time.up, 77
time.zone, 77
track, 107, 196, 244

sensitive, 34, 87, 99, 100
transition, 121
true, 46
tuple, 49
Twitch, 228
type, 31, 39, 236

annotation, 238

unit, 47
uptime, 77
URI, 14, 256

variable, 30, 51
interactive, 62, 138
unused, 52

video.add_text, 218
video.cover, 214
video.fill, 213
video.still_frame, 228
video.testsrc, 218
Vorbis, 156
VP9, 225

WAV, 154
webcam, 212
webcast, 96
while, 54

YouTube, 58, 150, 227
youtube-dl, 89, 212
yuva420p, 233, 243

272 INDEX

	Prologue
	What is Liquidsoap?
	About this book

	The technology behind streams
	Audio streams
	Streaming
	Audio sources
	Audio processing
	Interaction
	Video streams

	Installation
	Automated building using opam
	Using binaries
	Building from source
	Docker image
	Libraries used by Liquidsoap

	Setting up a simple radio station
	The sound of a sine wave
	A radio

	A programming language
	General features
	Writing scripts
	Basic values
	Programming primitives
	Functions
	Records and modules
	Advanced values
	Configuration and preprocessor
	Standard functions
	Streams in Liquidsoap

	Full workflow of a radio station
	Inputs
	Scheduling
	Tracks and metadata
	Transitions
	Signal processing
	Outputs
	Encoding formats
	Interacting with other programs
	Monitoring and testing
	Going further

	Video
	Generating videos
	Filters and effects
	Encoders
	Specific inputs and outputs

	A streaming language
	Sources and content types
	Frames
	The streaming model
	Requests
	Reading the source code

	Bibliography
	Index

