
Burning Man Radio
Scrubbed with Liquidsoap

Exploration on using Liquidsoap at the world’s
dustiest radio station during the pandemic

Liquidshop 1.0 — January 17, 2021
By David Cooper @dtcooper

https://twitter.com/dtcooper

About Me — David Cooper ● Staff at Burning Man Information Radio (BMIR)

● Wrote technical infrastructure for BMIR’s 2020
online-only stream and Shouting Fire radio

● Radio personality and stand-up comic

● Been a software engineer + engineering manager
in San Francisco for 10 years. Recently quit!

● Pedal Steel guitar player + has an annoying cat

● Wears glasses

● Shook hands
with the Fonz
20 years ago

https://burningman.org/
https://bmir.org/
https://shoutingfire.com/

● Custom built 4 decentralized online stations in an ad-hoc way
○ BMIR 20201, Shouting Fire, 820hz, KTLC Lost Church Radio (to be launched)

● These stations emphasize live and pre-recorded (long format + scheduled) programming.
○ “Always playing” AutoDJ less important, but there’s need for station ID and ad rotators organized into stop sets

● Problems
○ Liquidsoap installed inconsistently (out-of-date Debian packages, opam, using ./configure)
○ Difficult to re-install and upgrade, one-off scripts
○ Each station used the previous code as a starting point = technical debt and hard to manage
○ Was violating DRY: Don’t Repeat Yourself.

● Novel features. Common themes emerged. No out-of-the box solution fit needs.
○ Real-time stream management, status page, kick/ban DJ buttons
○ Zoom Room streaming + RTMP DJing
○ Treating silent DJs / Zoom rooms as if they weren’t connected at all
○ Long-format audio scheduling, uploading via SoundCloud / Mixcloud links
○ Google calendar-based scheduling: DJ authentication + tight DJ authorization windows
○ Zero listener downtime on Liquidsoap restart
○ Fine-grained permissions

● Why not put in the extra work and turn it into a free, open source project? Easy, right? ¯_(ツ)_/¯
1 BMIR uses Wide Orbit in the desert on-air studio but Liquidsoap as part of the redundant archival process. (Thanks Andy!)

How I’ve Used Liquidsoap in the Past

https://en.wikipedia.org/wiki/BMIR
https://shoutingfire.com/
https://820hz.fm/
https://www.thelostchurch.com/
https://soundcloud.com/
https://www.mixcloud.com/

● I decided to abstract my learnings from these
stations into a FLOSS project.

● Goals
○ Docker, docker, docker! (and docker-compose)

Can set up in prod + dev in a couple cmds

○ Once installed, can be completely self
managed by non-technical users

○ Straightforward UI for DJs and station
managers only

■ No listener UI included. Back-end only.
■ Leverages Django’s admin interface to

save dev time.

● Liquidsoap scripts can be customized by
advanced users

1 Crazy Arms is in need of a logo

Enter: Crazy Arms Radio Backend — 🤪 💪 📻 👩‍💻1

https://www.docker.com/
https://docs.djangoproject.com/en/3.1/ref/contrib/admin/

Crazy Arms Audio Flow Diagram
fallback([...])

requests.dynamic()

single()

requests.queue()

strip_blank(input.harbor())

strip_blank(input.pulseaudio())

“Upstream” Liquidsoap scripts connect to harbor and
are always on allowing zero listener downtime,

even on Harbor restart

Novel Features
Let’s go over some of the aforementioned novel features, and

their technical approach

● Station managers shouldn’t have to use shell

● Able to add/remove/lock DJ user accounts
○ Fine-grained permissions with Django auth groups

● Configuration through a settings page

● Managing audio assets
○ AutoDJ and pre-recorded broadcasts
○ Implemented using Django Admin

● Real-time stream management / status page
○ Visualize what’s going on in real-time using

Server-Sent Events (like Websockets)
■ Uses nchan module for Nginx

○ DJ ban button
○ Skip track button
○ (Next slide)

Feature: Non-Technical Station Management

https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://nchan.io/

● Onboarding DJs is always a problem.
○ DJs can’t figure out how to connect using Icecast 2
○ butt is hard to use, Audio HiJack is $59 and macOS only, they can’t work a USB mixer.
○ DJs don’t disconnect. Icecast 2 source clients left accidentally open.

■ Emergencies fixed by kick/ban button, tight scheduling described in later slide.
○ DJs broadcast silence or come in too hot 🔥 / too cold 🥶

■ Live sources use strip_blank(), output uses compression/normalization (optional)

● DJs understand Zoom. Icecast 2 is too difficult.
○ We don’t want to preclude less technical people from being DJs.
○ We want to support talk live programming

■ Lord help us if they want to use a mix-minus to use Zoom + butt (󾓪 “clean feed”)
○ Killer Feature: Share Desktop Audio, ie if you hear in your speakers, it’s broadcasting

● DJs understand OBS (or another RTMP client)
○ Some folks invested a lot of time in understanding OBS and ask about it when onboarding
○ I always say “Icecast is different than the live streaming you’re used to on Twitch” and get

shrugged off, only to have them call me right before their first show confused.

Feature: Idiot-Tolerant™ DJing

https://danielnoethen.de/butt/
https://rogueamoeba.com/audiohijack/

● DJ submits their Zoom Room Link
● An dummy attendee joins their room,

and leaves when their show is done

Feature: Zoom Broadcasting

● Admins can use web interface to
configure and login to the
broadcasting Zoom account

● (Optional, but a paid Zoom account
allows for longer 3+ person rooms)

● Pulseaudio with always-sink + tcp-proto modules running in Harbor container
○ Zoom source in main fallback() — strip_blank(input.pulseaudio())

● Zoom for Linux runs in a separate Ubuntu Docker container
○ icewm desktop on top of fake X (virtual buffer) via Xvfb
○ Web administration: x11vnc + noVNC + websockify
○ Zoom starts and stops by shell script receiving variables from web app

■ Script uses xdg-open and xdotool to mechanize user interaction with Zoom
○ Audio forwarded to Harbor container by env var: PULSE_SERVER=<addr-of-harbor-container>

● Simple as that!

● Source: github.com/dtcooper/crazyarms/tree/master/zoom

Feature: Zoom Broadcasting - Technical

https://www.freedesktop.org/wiki/Software/PulseAudio/
https://zoom.us/download?os=linux
https://ice-wm.org/
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
http://www.karlrunge.com/x11vnc/
https://novnc.com/
https://github.com/novnc/websockify
https://linux.die.net/man/1/xdg-open
http://manpages.ubuntu.com/manpages/trusty/man1/xdotool.1.html
https://github.com/dtcooper/crazyarms/tree/master/zoom

● DJ gets RTMP server address and stream key from app and pastes into OBS

● nginx-rtmp runs in a Docker container

● nginx-rtmp auths DJs stream key via the on_publish directive

● nginx-rtmp calls shell script on stream publish via the exec_push directive

● Shell script uses ffmpeg to transcode RTMP stream to input.harbor() as if
DJ were a normal Icecast 2 source client

● Simple as that!

● Source: github.com/dtcooper/crazyarms/tree/master/rtmp

Feature: Open Broadcaster Software (OBS) / RTMP

https://github.com/arut/nginx-rtmp-module
https://ffmpeg.org/
https://github.com/dtcooper/crazyarms/tree/master/rtmp

● Recurring events are hard. Time zones are hard. Google Calendar does it well.
○ All scheduling is handled by a shared Google Calendar.
○ The email address for your DJ account needs to be invited to the Google Calendar event

● DJs show times are restricted to GCal
events or always authorized.

● Optional “entry” and “exit” grace periods

● Web app runs in the timezone settings
of the logged in DJ account.

● When a restricted show time is up, DJ is kicked off. Any attempt to re-auth will
be rejected. Uses server.execute('<dj_source_id>.stop')

Feature: Google Calendar Scheduling

● Basic AutoDJ functionality

● Optional stop set support, ie groups
of “jingles” that play at intervals, eg

○ Station ID / Ad / Ad / PSA / Station ID

● Optional weighted playlist support

● DJ’s web UI supports requests

● Admins can schedule long format, pre-recorded broadcasts for specific times
○ These get played at the exact right time using telnet server: <prerecorded_source>.queue <uri>

● Anti-repeat code on a per-track and per-artist basis

● Bulk importing via SFTP or command line, links like SoundCloud work with youtube-dl

Feature: AutoDJ and
Pre-recorded Broadcasts

https://soundcloud.com/
https://youtube-dl.org/

● You can try it today! Preloaded with sample data!

● Targeting first release: mid-February 2021

● We need a logo! If you want to help, reach out.

● What’s left?
○ Complete documentation
○ Improve front-end web app: jQuery to alpine.js - FOR SHAME!!!
○ Freeze dependencies: Docker images, Python package versions
○ Release containers to Docker Hub
○ More complete unit testing
○ Test stream
○ There’s a TODO list in the repository

● Future Releases
○ Recorded archive of live shows (possibly as automatically published podcasts)
○ Better front-end visual design
○ Using S3 to store audio assets

What’s Next?

https://github.com/alpinejs/alpine
https://hub.docker.com/
https://github.com/dtcooper/crazyarms/blob/master/TODO.md

● AzuraCast, LibreTime - Several concepts come from them so THANK YOU

● The Liquidsoap Team

● You for attending!

Thanks

https://azuracast.com/
https://libretime.org/

● Crazy Arms crazyarms.xyz / github.com/dtcooper/crazyarms
○ Link to this deck in the repo

● Me - david.cooper@burningman.org
○ github.com/dtcooper

● BMIR 94.5 FM / Shouting Fire

● Bonus: My terrible call-in radio show (NSFW) - www.jew.pizza
This Is Going Well, I Think with David Cooper

Links

https://crazyarms.xyz/
https://github.com/dtcooper/crazyarms
mailto:david.cooper@burningman.org
https://github.com/dtcooper
https://en.wikipedia.org/wiki/BMIR
https://shoutingfire.com/
https://www.jew.pizza/

Fin.
Questions / Comments

