
Ease your automation,
improve your audio,

with FFmpeg

A talk by John Warburton,
freelance newscaster for the More Radio network,

lecturer in the Department of Music and Media
in the University of Surrey, Guildford, England

Ease your automation,
improve your audio,

with FFmpeg

A talk by John Warburton,
who doesn’t have a camera on this machine.

My use of Liquidsoap
I used it to develop a highly convenient,

automated system suitable for in-store radio,
sustaining services without time constraints, and

targeted music and news services.

It’s separate from my professional newscasting job,
except I leave it playing when editing my

professional on-air bulletins, to keep across world,
UK and USA news, and for calming music.

In this way, it’s incredibly useful,
professionally, right now!

What is FFmpeg?

It’s not:
• “a command line program”

• “a tool for pirating”

• “a hacker’s plaything” (that’s what they said about GNU/Linux once!)

• “out of date”

• “full of patent problems”

It asks for:
• Some technical knowledge of audio-visual containers and codec

• Some understanding of what makes up picture and sound files and multiplexes

What is FFmpeg?

It is:
• a world-leading multimedia manipulation framework
• a gateway to codecs, filters, multiplexors, demultiplexors, and measuring tools
• exceedingly generous at accepting many flavours of audio-visual input
• aims to achieve standards-compliant output, and often succeeds
• gives the user both library-accessed and command-line-accessed toolkits
• is generally among the fastest of its type
• incorporates many industry-leading tools
• is programmer-friendly
• is cross-platform
• is open source, by most measures of the term
• is at the heart of many broadcast conversion, and signal manipulation systems
• is a viable Internet transmission platform

Integration with Liquidsoap? (1.4.3)

1. As an output processor and encoder
• Can use Liquidsoap’s own internal functions:

• output.external.ffmpeg

• output.file.hls.ffmpeg

• output.youtube.live.ffmpeg

2. As the external coder for output.icecast:
• %external(...)

Integration with Liquidsoap? (1.4.3)

3. As a very flexible input decoder:
• set("audio.converter.samplerate.converters",["libsamplerate"])

• set("audio.converter.samplerate.libsamplerate.quality","best")

• set("decoder.file_decoders",
["META","WAV","AIFF","MIDI","IMAGE","FFMPEG","FLAC","AAC","MP4","OGG","MAD"])

• set("decoder.file_extensions.gstreamer", [])

• set("decoder.mime_types.gstreamer", [])

• set("decoder.file_extensions.ffmpeg",["mp3","mp4","m4a","wav","flac","ogg","webm
","opus","mka"])

4. As a framework for preparing audio for queue injection:
• /usr/local/bin/ffmpeg -y -i `/home/john/src/radio/getCBS.py` -af dynaudnorm=b=1:g=7 -t 02:55.200 -

ac 1 -ar 32000 -acodec libfdk_aac -vbr 5 ~/src/radio/cbsnews-temp.mka && /usr/local/bin/ffmpeg -y -

i ~/src/radio/cbsnews-temp.mka -filter_complex

"[0:0]asplit=2[st][fi];[fi]atrim=start=163,silenceremove=stop_periods=1:stop_threshold=-

30dB:stop_duration=0.4[cl];[st]atrim=end=163[stc];[stc][cl]concat=n=2:a=1:v=0,asetpts=N/SR/TB,dynau

dnorm=b=1:g=7,volume=-11dB" -acodec libfdk_aac -ar 32000 -ac 2 -vbr 5 ~/src/radio/cbsnews.mka

Integration with Liquidsoap? (1.4.3)

5. As a preparation tool:
• for automatic track volume pre-determination;

• for automatic track start and end detection;

• for automatic positioning of fade-out point;

• for semi-automatic library item de-duplication

Playlist preparation and weeding

• I have a directory containing all files available to Liquidsoap

• Incoming files need preparing, for Liquidsoap to use, and for playlist
inclusion and annotation

• How to ensure an incoming file isn’t already encoded?

• Use the hash function!
ffmpeg –v quiet –hide_banner \

–i <FILENAME> \

-vn \

–map 0:a \

–f hash –hash MD5 -

Playlist preparation and weeding

ffmpeg –v quiet \

–hide_banner \

–i <FILENAME> \

-vn \

–map 0:a \

–f hash –hash MD5 -

Call ffmpeg, tell it to print no diags

Don’t print the “copyright”, etc., banner

Here’s the input filename

Don’t even think about any images in it

Use only the principal audio track

Tell it to output a hash, of form MD5, and

send the text to stdout

Don’t process files twice!

Playlist preparation and weeding

Don’t process files twice!

You can then incorporate the hash into

the filename (whether you choose to

re-encode or not), so as to quickly spot

if a particular piece of audio (bit-exact)

has been processed in a previous

session.

Playlist preparation and weeding

ffmpeg \

–hide_banner \

–i <FILENAME> \

-vn \

-map 0:a

-af ebur128 \

-f null null

Call ffmpeg, but we will need diags.

Don’t print the “copyright”, etc., banner

Here’s the input filename

Don’t even think about any images in it

Only examine the principal audio track

Produce EBU R.128 loudness statistics

But don’t produce anything else at this stage

How loud is it? (Therefore, what playback gain is required?

And when can we start and end/overlap the track on air?)

Playlist preparation and weeding

By parsing this output, you can determine the track’s loudness, and the shape of the

loudness at the beginning and the end.

I generally ask the system to wait for a track’s loudness’s final dip to fall by 8dB.

Some internal logic also copes with very long tails e.g. “Bohemian Rhapsody”.

Playlist preparation and weeding

• The data is encoded with the ‘annotate’

protocol for further enjoyment by the

Liquidsoap engine.

• NOTE: with gain for replay, always set a

low level as your standard replay gain, so

there is never any clipping caused by

amplification.

• Remember: Liquidsoap’s internal audio

processing is 64-bit (Romain, that’s what

you said, isn’t it?)

• Therefore, there is no risk of losing

significant audio data, either by clipping

or by introducing quantising errors.

Smooth on-air playback of this data

set("playlists.cue_in_metadata", "liq_cue_in")

myplaylist = amplify(override="liq_amplify", 1.0,

cue_cut(playlist(length=60.0, reload_mode="watch",

mime_type="audio/x-mpegurl", “MYPLAYLIST.m3u8")))

myplaylist = crossfade(fade_out=0.01, fade_in=0.01,

default=(fun(a,b)->add(normalize=false,([b, a]))),

conservative=true, myplaylist)

Playlist preparation and weeding
What if the same piece of music exists in more than one form,

but not bit-exact duplicates?
Use the Chromaprint library to

process the first 20 seconds of

each file:

fpcalc –algorithm 4 –overlap –length 20 –raw <FILENAME>

Then process its output to give a

sequence of digits from the set {0,

1, 2, 3} corresponding to strengths

of audio across sixteen frequency

bands with respect to time.

(Last item is duration in seconds.)

Playlist preparation and weeding
What if the same piece of music exists in more than one form,

but not bit-exact duplicates?
Then use fuzzy matching algorithms (e.g. Levenshtein matching) to determine closeness of

these fingerprints.

Use multiprocessing via Python front-end for speed.

Typically processes 4,000 tracks in around three hours, giving pairs of tracks with a ‘match’

estimate.

Filter on match estimate to taste.

Below, example shows invalid match on first line (low score) then three ‘real’ matches. These

are spotted despite non-matching metadata.

On-air Sound

• FFmpeg’s extraordinary audio filtering can give your station flexibility.

• Do you have different audiences requiring different sounds?

• Serve them all!

• My examples:
• One for in-car or in-kitchen listening:

with very low bandwidth (32kbit/s) and deep multi-band audio processing
(like ‘Skyrock’ but taken rather further)

• One for high-fidelity listening:
maximum variable AAC bit-rate, very little limiting,
EBU R.128 loudness adjustment in real time

• Same as above, but low bit-rate to save bandwidth on dodgy links

On-air Sound

output.icecast(description="Experimental stream using Liquidsoap", genre="Freeform",

name="Music Too", host="127.0.0.1", port=8000, mount="audio.aac",

public=true, url="http://warblefly.sytes.net:8000/audio.aac",

timeout=240.0, format="audio/aac", password=“<redacted>",

%external(samplerate=48000, channels=2,

process="ffmpeg -f s16le -ar 48000 -ac 2 -i pipe:0 -acodec libfdk_aac -vbr 1

-profile:a aac_he_v2 -vn –af

dynaudnorm=g=15:m=70:r=1.0:c=1:b=1,asetnsamples=2048,

volume=-18dB,mcompand='0.005\,0.1 6 -47/-40\,-34/-34\,-17/-33 100 |

0.003\,0.05 6 -47/-40\,-34/-34\,-17/-33 400 |

0.000625\,0.0125 6 -47/-40\,-34/-34\,-17/-33 1600 |

0.0001\,0.025 6 -47/-40\,-34/-34\,-17/-33 6400 |

0\,0.025 6 -47/-40\,-34/-34\,-17/-33 15999’,

volume=+20dB,aresample=192000,

alimiter=limit=-4dB:attack=0.1:asc=1:asc_level=1,

aresample=32000:resampler=swr:cutoff=0.99:filter_type=kaiser:kaiser_beta=16

-f adts pipe:1"), radio)

On-air Sound

• When properly driven oversampled, the FFmpeg delay-line limiter is
bomb-proof.

• The multi-band compressor, though lacking band-linking tools such as
those in, say, Orban products or “Stereotools”, is still of very high
quality, and provides arbitrarily many bands to tune your station
sound.

On-air Sound

• http://warblefly.sytes.net:8000/audio.aac

• http://warblefly.sytes.net:8000/audio-hifi.aac

• http://warblefly.sytes.net:8000/audio-hifi-low.aac

• http://warblefly.sytes.net:8000/audio-am.aac

http://warblefly.sytes.net:8000/audio-am.aac

http://warblefly.sytes.net:8000/audio.aac
http://warblefly.sytes.net:8000/audio-hifi.aac
http://warblefly.sytes.net:8000/audio-hifi-low.aac
http://warblefly.sytes.net:8000/audio-am.aac
http://warblefly.sytes.net:8000/audio-am.aac

Pitfalls

• FFmpeg with the fdkaac encoding library is best for low-bandwidth
audio — but you may need to compile it yourself

• When doing any processing, don’t forget to oversample before
limiting (think Nyquist/Shannon and overshoots)

• Don’t imagine that basic limiting is sufficient to avoid over-deviation
for an FM multiplex transmission that involves pre-emphasis

• Use raw encoding into FFmpeg for output, rather than assuming
.WAV format — sometimes, size limits on .WAV are enforced

Hints

• Resample just before transmission to the lowest sample-rate your
application requires. For FM sound-alike radio, 32,000 samples per
second. (You can run internally, within Liquidsoap, any reasonable
sample rate you like.)

• Try my FFmpeg binaries or compile scripts if you want a version with
the FDK AAC library included. Note that Liquidsoap also has FDK
AAC encoding capability (including HE-AACv2) but I have (sadly) not
been able to get the lowest bandwidths to work in the past. Romain,
is this ok now?

• https://github.com/Warblefly

