
Romain Beauxis, Jan. 23 2022

Liquidoap 2.0.x - A look back
…and forth!



Liquidsoap 2.0.x
The look back

• FFmpeg integration

• Language features

• The book



FFmpeg integration

• De-facto reference implementation, library and API for multimedia 
programming


• Excellent quality and APIs


• All-encompassing project, codec, muxers, I/O protocols & devices, and filters


• 20+ years of existence, worldwide community of expert developers

What FFmpeg provides



FFmpeg integration

• Programming language


• Specialized operators and variables (sources, filters, input/outputs)


• Programming abstractions (functions, abstract data structures etc)


• Static typing!

What Liquidsoap provides



FFmpeg integration
A scripting language powered by FFmpeg

• Tight integration with FFmpeg APIs


• What the ffmpeg CLI can do, we should be able to do


• Support for all codecs, muxers, I/O protocols, etc.


• Programming language flexibility



FFmpeg integration
…but not only!

• There are limits to what FFmpeg provides vs. custom implementations


• HLS output: segment callbacks, name, etc.


• SRT I/O


• Devices support



FFmpeg integration
Example 1: Complex filter



FFmpeg integration
Example 1: Complex filter



FFmpeg integration

Source: https://medium.com/craftsmenltd/ffmpeg-basic-filter-graphs-74f287dc104e

Example 1: Complex filter

https://medium.com/craftsmenltd/ffmpeg-basic-filter-graphs-74f287dc104e


FFmpeg integration
Example 1: Complex filter



FFmpeg integration
Example 1: Complex filter



FFmpeg integration
Example 1: Complex filter



FFmpeg integration
Example 1: Complex filter



FFmpeg integration
Example 1: Complex filter



FFmpeg integration
Example 1: Complex filter



FFmpeg integration
Example 2: Stream with no re-encoding



FFmpeg integration
Example 2: Stream with no re-encoding



Language Features
Simple things should be simple…



Language Features
Simple things should be simple…

• Not all people interested in streaming are 
programmers!


• Programming language can and should help


• Complexity should arise only when needed


• Be aware of user requests and features


• Fix bugs!


• … but with limited resources



Language Features
Simple things should be simple…

• Not all people interested in streaming are 
programmers!


• Programming language can and should help


• Complexity should arise only when needed


• Be aware of user requests and features


• Fix bugs!


• … but with limited resources



Language Features
Simple things should be simple…



Language Features
Simple things should be simple…



Language Features
Simple things should be simple…



Language Features
Simple things should be simple…



Language Features
Simple things should be simple…



Language Features
Simple things should be simple…



Language Features
…but complex things should be possible



Language Features
Yet, sometimes, complexity is inevitable



Language Features
Yet, sometimes, complexity is inevitable



Language Features
Yet, sometimes, complexity is inevitable



Language Features
Yet, sometimes, complexity is inevitable



Language Features
Yet, sometimes, complexity is inevitable



Language Features
Yet, sometimes, complexity is inevitable



Language Features
Yet, sometimes, complexity is inevitable



A look forward
More simply simple…



A look forward
More simply simple…



A look forward
…with revisited complexity

• Continue moving functionalities out of the OCaml core


• Core release vs. standard library release?


• Improve type checker whenever possible


• Refactor, modernize internal implementations


• Frames: breaks vs. track marks, immutable content vs. content copy


• Streaming model: code complexity (clocks, source readiness)


• Prepare for multicore OCaml!


