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Liquidoap 2.0.x - A look back
…and forth!



Liquidsoap 2.0.x
The look back

• FFmpeg integration

• Language features

• The book



FFmpeg integration

• De-facto reference implementation, library and API for multimedia 
programming


• Excellent quality and APIs


• All-encompassing project, codec, muxers, I/O protocols & devices, and filters


• 20+ years of existence, worldwide community of expert developers

What FFmpeg provides



FFmpeg integration

• Programming language


• Specialized operators and variables (sources, filters, input/outputs)


• Programming abstractions (functions, abstract data structures etc)


• Static typing!

What Liquidsoap provides



FFmpeg integration
A scripting language powered by FFmpeg

• Tight integration with FFmpeg APIs


• What the ffmpeg CLI can do, we should be able to do


• Support for all codecs, muxers, I/O protocols, etc.


• Programming language flexibility



FFmpeg integration
…but not only!

• There are limits to what FFmpeg provides vs. custom implementations


• HLS output: segment callbacks, name, etc.


• SRT I/O


• Devices support



FFmpeg integration
Example 1: Complex filter
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FFmpeg integration

Source: https://medium.com/craftsmenltd/ffmpeg-basic-filter-graphs-74f287dc104e

Example 1: Complex filter

https://medium.com/craftsmenltd/ffmpeg-basic-filter-graphs-74f287dc104e
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FFmpeg integration
Example 1: Complex filter



FFmpeg integration
Example 2: Stream with no re-encoding



FFmpeg integration
Example 2: Stream with no re-encoding



Language Features
Simple things should be simple…



Language Features
Simple things should be simple…

• Not all people interested in streaming are 
programmers!


• Programming language can and should help


• Complexity should arise only when needed


• Be aware of user requests and features


• Fix bugs!


• … but with limited resources
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Language Features
…but complex things should be possible



Language Features
Yet, sometimes, complexity is inevitable
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A look forward
…with revisited complexity

• Continue moving functionalities out of the OCaml core


• Core release vs. standard library release?


• Improve type checker whenever possible


• Refactor, modernize internal implementations


• Frames: breaks vs. track marks, immutable content vs. content copy


• Streaming model: code complexity (clocks, source readiness)


• Prepare for multicore OCaml!


