
playgen:
A playlist generator for streaming services like LiquidSoap

presented by
Mark Jeghers

playgen overview

• A background data service that generates
automatically randomized playlists

• I've been using it with liquidsoap for several
years now.

• playgen is written in JavaScript and uses
NodeJS and Express technologies

• https://github.com/jeghers/playgen

Full set of features…
• Completely randomized song selection unattended 24/7
• Based on NodeJS/Express technologies
• Highly RESTful API
• Can be accessed programmatically with HTTP requests

(including with 'curl')
• Supports multiple playlists (e.g. for multiple program

streams)
• Randomizes song playback with advanced features

– Optimize randomization logic to insure maximum "fairness"
– No song ever repeated until complete song list is gone through
– Configurable deferral of duplicate song titles
– Configurable deferral of duplicate song artists

Full set of features…

• Automatic songlist generation for a directory full of
song files

• A new request feature allows a queue of specified
song(s) to be unconditionally played next after the
current song completes

• Uses MySQL to store playlist options (the songs
themselves are listed in text files)

• New plugin architecture allows customized logic for
logging and song details extraction

• I've not implemented HTTPS because I assume this will
be used behind a firewall anyway. Feel free to make
such an enhancement and submit a PR.

Full set of features…

• New support for Windows 10 service (beta)
• In addition to random song selection, playgen

can provide song list and status information to
other webapps.

• My web portal shows me the full status of my
Liquidsoap/Icecast system
– including displays of all the playlists, song requests

and histories
– playgen provides much of this data.

Part of my Liquidsoap/Icecast
“BluesWire” streaming solution…

Prerequisites

• NodeJS (at least version 12 recommended)
• MySQL (preferably running on localhost)
• Runs 24/7 on a CentOS 7 server
• Should run well on other reasonable Linux flavors
• Routinely tested on Windows 10

How the random selection works

A simple selection of a random song from a list has
several problems:

 Same song could get selected again while other songs
are never selected at all.

 If there are many songs of the same title (different
performances of the same song), the same song could
occur again soon after it was already heard.

 More than once song from the same artist could be
selected close to one another.

 There is no guarantee that all songs in the list get an
equally fair chance to be selected.

How the random selection works

Playgen uses an algorithm for random song
selection that overcomes all these problems
• Each song in the playlist is assigned a random

number index.
• The list is sorted according to those numbers,

resulting in a uniquely random sequence.
• By iterating through the list according to the

random indices, every song is now selected with
"equal fairness".

• Over time, every song will eventually get selected

How the random selection works

• The playlist can be configured to have a "redundant
title threshold". A song with duplicate title will be
moved to a later point in the list (postponed).

• The playlist can be configured to have a "redundant
artist threshold", allowing songs of the same artist to
be postponed as well.

• The random selection is bypassed if song requests are
added to the request queue.
– Those songs go to the “front of the line”.
– After the request queue is depleted, then the random

selection will resume.

How to deploy playgen

• Install a reasonably new version of NodeJS, at
least version 12 or greater

• git clone the software into a fresh new directory
• Run npm install to download dependancy

modules
• Edit config/default.js to configure your MySQL

database
• Create the ‘playlists’ table in the MySQL database

How to deploy playgen

• Populate the 'playlists' table with your desired
playlist(s)
– The "Playlist Configuration" section in

documentation will guide you.
• Use “npm run start” to run the playgen service
• The playlist generator can be accessed with

API calls like these:
GET http://myhost:3000/api/playlists
GET http://myhost:3000/api/playlists/myplaylist
GET http://myhost:3000/api/playlists/myplaylist/nextsong
GET http://myhost:3000/api/playlists/myplaylist/currentsong

Playlist configuration
In the 'playlists' table, each row describes a playlist.
• name: the id for the playlist
• filePath: text file naming all the songs in the playlist, or a

directory full of song files
• description: a human-readable description of the playlist
• redundantTitleThreshold: how soon another song with an

identical name is allowed
• redundantArtistThreshold: how soon another song with an

identical artist is allowed
• partialTitleDelimiters: a collection of characters that will be

shorten duplicate title comparisons
• songDetailsPluginName: optional customization of song details

extraction

Playlist configuration

partialTitleDelimiters allow similar titles to be
considered duplicate:
• Example: partialTitleDelimiters = "(,"

• These titles would all be treated as identical
– "Sing Along“
– "Sing Along (live)“
– "Sing Along, Sing With Me (medley)“

• They match because their first delimited sections
are identical

Playlist filenames

• Details about the songs are embedded into
the songs filenames

• Well-defined fields that denote title, artist, etc
• By having this metadata in the filenames, the

song files themselves can be treated as totally
content-agnostic, avoiding expensive parsing

• Example: title-artist-album-label-year.mp3

Playlist filenames

For example: an MP3 file contains the song "Pearline" by
"Son House", from an album "The Original Delta Blues"
released by "Columbia Legacy" in 1965:

– title: Pearline
– artist: Son House
– album: The Original Delta Blues
– label: Columbia Legacy
– year: 1965

• The filename should be:
Pearline-Son House-The Original Delta Blues-
Columbia Legacy-1965.mp3

Playlist filenames

What if your files don’t match this naming
convention?
• You can make an automated shell script

program to take song files and convert them
to this naming convention. That will save you
a lot of bother over time.

• Using the new plugin architecture, a provided
“mp3Tags” plugin can be used to parse MP3
tags for song details (but slower startup)

Playlist filenames
My own automatic conversion script uses…

• A data file maps all my MP3s into their desired standard
names, and my shell script uses this file…

/var/www/t4p.com/public_html/blues/cakewalk:/usr2/Blues:Ac
oustic Medley:If I Leave This World Tomorrow, One Way
Ticket (medley)-Crimson Blues-Live at Bernal-T4P Music-
2012

/var/www/t4p.com/public_html/blues/cakewalk:/usr2/Blues:Sa
die:Sadie-Mark Jeghers-The Bluez Projekt-T4P Music-2013

Field 1 – the source directory
Field 2 – the destination to copy the file to
Field 3 – the file to copy over
Field 4 – the standardized name to rename it to

Customizing with plugin architecture

• Playgen now allows customized Javascript
code to be added as “plugins”

• Allows customization for logging and song
details extraction

• Sample plugins provided:
– Logging to console, local file, or rsyslog server
– Song details extracted from filename or MP3 tags
– Boilerplate samples provided for developers

Using playgen with liquidsoap

• To get a new song selection, we call this
playgen API…
– /api/v1/playlists/retro/nextsong?format=text

• Using the Linux “curl” command to call the API
• By default, the API returns JSON data
• The option “format=text” returns the next

song file as plain text
– This is easier for Liquidsoap to consume

Using playgen with liquidsoap
• Sample .liq script
playlistJingles = audio_to_stereo(playlist("~liquidsoap/playlists/jingles-playlist.txt"))

def retro_request_function() =
result = get_process_output
("curl 'http://localhost:3000/api/v1/playlists/retro/nextsong?format=text'")

in V2 use process.read instead
in Windows, you might have to remove the single-quotes from the above command
log("Next song "^result)
request.create(result)

end

... more similar request functions here for other sources ...

Create the sources
plr = request.dynamic(retro_request_function) # <-- this is where we call playgen
Play a station ID jingle after every fourth song
plr = rotate(weights=[1,4], [playlistJingles, plr])

... more sources created here ...

output.icecast(
%mp3(bitrate=48, id3v2=true),
host="localhost", port=8000, password="some-password",
mount="/retro", genre="Old Pre-War Blues",
description="Retro Pre-war blues all the time",
url="http://www.yourdomain.com:8000/retro", mksafe(plr))

... more sources connected to icecast here ...

The REST API for playgen
• Given: a host named somehost and port 3000

GET http://somehost:3000/api/v1/playlists
Returns a list of all playlists

Sample response body
{
"status": "OK",
"result": [

{
"name": "johnson",
"filePath": "/usr/local/nodeapps/playgen/playlists/johnson-playlist.txt",
"description": "Songs by Robert Johnson",
"redundantTitleThreshold": 0,
"partialTitleDelimiters": "",
"redundantArtistThreshold": 0,
"songCount": 29,
"uri": "http://192.168.0.248:3000/api/v1/playlists/johnson"

},
... etc etc etc ...
"count": 6

}

The REST API for playgen
• More API examples

• POST http://myhost:3000/api/v1/playlists
– Creates a new playlist

• PUT http://myhost:3000/api/v1/playlists/{playlist}
– Updates a playlist (except for song details)

• DELETE http://myhost:3000/api/v1/playlists/{playlist}
– Deletes a playlist (song files are not removed)

The REST API for playgen
• Songs within a playlist

• GET http://somehost:3000/api/v1/playlists/
{playlist}/songs

• Returns a list of all the songs in the specified playlist
• GET http://somehost:3000/api/v1/playlists/

{playlist}/songs/{songIndex}
• Returns a specified song in the specified playlist

The REST API for playgen
• Song requests within a playlist
• POST http://somehost:3000/api/v1/playlists/

{playlist}/requests
– Creates a new song request for the specified playlist
– Sample request body
{
"songIndex": 22

}

• GET http://somehost:3000/api/v1/playlists/
{playlist}/requests

• Returns a list of all the song requests for the specified
playlist

The REST API for playgen
• Song selection (most important!)
• GET http://somehost:3000/api/v1/playlists/

{playlist}/nextsong[?format=text]
– Returns the next song selection for the specified playlist.
– Either random selection, or, if the request queue is not

empty, the first song in the request queue.
• GET http://somehost:3000/api/v1/playlists/

{playlist}/currentsong
– Returns the most recent song selection
– Does not cause any new song selection to occur

Future ideas
• More new plugins to allow the use of

non-standardized filenames?
• Currently, song history is cleared upon restart

– Perhaps persist the history on file or DB table?

Summary

• I’ve been using playgen for years
• The randomization of song selection is fine-

tuned for the best human experience possible
• The RESTful API allows you to build robust

web-apps for managing the playlists
• We are open to ideas to improve playgen,

making it fit more use cases

Thank You!

https://github.com/jeghers/playgen

