playgen:

A playlist generator for streaming services like LiquidSoap

presented by
Mark Jeghers

playgen overview

A background data service that generates
automatically randomized playlists

I've been using it with liquidsoap for several
years now.

playgen is written in JavaScript and uses
NodelS and Express technologies

https://github.com/jeghers/playgen

Full set of features...

Completely randomized song selection unattended 24/7
Based on NodelS/Express technologies
Highly RESTful API

Can be accessed programmatically with HTTP requests
(including with 'curl')

Supports multiple playlists (e.g. for multiple program
streams)

Randomizes song playback with advanced features

— Optimize randomization logic to insure maximum "fairness"

— No song ever repeated until complete song list is gone through
— Configurable deferral of duplicate song titles

— Configurable deferral of duplicate song artists

Full set of features...

Automatic songlist generation for a directory full of
song files

A new request feature allows a queue of specified

song(s) to be unconditionally played next after the
current song completes

Uses MySQL to store playlist options (the songs
themselves are listed in text files)

New plugin architecture allows customized logic for
logging and song details extraction

I've not implemented HTTPS because | assume this will
be used behind a firewall anyway. Feel free to make
such an enhancement and submit a PR.

Full set of features...

* New support for Windows 10 service (beta)

* |n addition to random song selection, playgen
can provide song list and status information to
other webapps.

My web portal shows me the full status of my
Liquidsoap/Icecast system

— including displays of all the playlists, song requests
and histories

— playgen provides much of this data.

Part of my Liquidsoap/Icecast
“BluesWire” streaming solution...

My management
Icecast £ Web Application
Icecast
monitoring
API calls

I I I playgen monitoring and
management API calls

Liquidsoap - playgen
nextsong
API calls

System Monitor

i3 DASHBOWRD J IC

SAST o CALLSIGN : M FUN MINES

! TOOLS 9

@ b 2 i _ : .
ICECAST SERVER SOURCES S, colson > 270 30005)-- 0 Relanacts) =
Source Status Play List (songs) Requests History
Title Artiit Al s
1 An't Mo Grave Crimson Blues Just The Way We Rodl (Then) 2013 =
2 Ain't No Grave Crimson Blues Live at Higher Poswer 2014
3 Amaging Grace W24 Bluez Band Don't You Know 20T
4 Amaging Grage, Okl Cheap Bottle Of Wine (mediey) Mark Jeghers The Bluez Propekt 2013
5 Angels Are Weepin Mark foghers Slide Ahead 2015
6 Baby Jlames Mark beghers Retro 201
7 Baby Lee The RedHouse Blues Band AedHouse at the Roadhouse 2009
B Buaby What You Want Me To Do Mark beghers The Bluez Projekt 2006
4 Before You Accuse Me Mark beghers The Bluez Propekt 2005
i) Bilack Cat Bone The RedHouse Blues Band RedHouse at the Roadhouse 2009
12 System Monitor 58 DASHBOARD J IC o CALLSIGN @ [FUNMINES

a i ,
ICECAST SERVER SOURCES RO o= 00(sngls) - O Relerent)
Source Status Play List (songs) Requests History

Soreamin’ And Hollerin® The Blues

Charey Patton

Complete Recordings 1929 to 1934 [June 192%)

me Mayed

2021-12-04 11210 am

2 John The Revelater Elind Willie Johnzon The Completa Elnd Wilke Johnson (Disc 2) 2021-12-04 108:53 am
3 o Dag Cab Calloway The Early Wears 1930 10 1934 (Disc 2) 2021-12-04 1105:28 am
4 Liztle Queen OF Spades Roben Johnson The Complete Collactan 2021-12-04 103:13 am
5 How Come kama Blues Wialter Hawking Complate REcordings 1929 10 1934 (Jumre 1929) 2021-12-04 1200:03 am
6 Mignight Special Esg Bill Broonzy The Anithology 2021-12-04 12:57:13 am
7 Goodnight lrens Leadbelly 100 Blues Masters vol. 2) 20271-12-04 12:54:15 am
a Ain't But One Kind of Blues Son House Black Snake Moan 2027-12-04 12:54:04 am
9 Sputhern Can ks Mine e MTell The Rough Guide To Country Blues Pioneers 2027-12-04 12:50:50 am
] Soame Of These Days ' Be Gone (Take 2) Charley Patton The Rough Guide To Country Blues Pioneers 2021-12-04 124741 am
1 Mever Mever Esg Bill Broonzy The Antholegy 20271-12-04 12:44:42 am
12 Farrell Blues Henry Sims Complete Recordings 1929 10 1934 (O 1929) 20271-12-04 12:47:23 am
14 o tm e il T AAE Bl nn i nbsss Alal 5 SAAL 15 AE 85 AESA

Prerequisites

NodelS (at least version 12 recommended)
MySQL (preferably running on localhost)

Runs 24/7 on a CentOS 7 server

Should run well on other reasonable Linux flavors
Routinely tested on Windows 10

How the random selection works

A simple selection of a random song from a list has
several problems:

x Same song could get selected again while other songs
are never selected at all.

x |f there are many songs of the same title (different
performances of the same song), the same song could
occur again soon after it was already heard.

x More than once song from the same artist could be
selected close to one another.

x There is no guarantee that all songs in the list get an
equally fair chance to be selected.

playlist songs

song 1

song 2

song 3

song 4

song o

song 6

song 7

song 8

song 9

song 10

song 11

song 12

song 13

song 14

song 15

song 16

song 17

song 18

song 19

song 20

song 21

song 22

song 23

song 24

Purely random
selections...

song 11
song 6
song 20
song 6
song 18
song 3
song 11
song 6
song 17
song 1
song 8
song |
song 6
song 21
song 9
song 6
song 7
song 5

Oops!

* some songs were
selected much
too often

* some songs were

not selected at
all

* I'll bet some
songs were
duplicate titles
too!

How the random selection works

Playgen uses an algorithm for random song
selection that overcomes all these problems

 Each song in the playlist is assigned a random
number index.

* The list is sorted according to those numbers,
resulting in a uniquely random sequence.

* By iterating through the list according to the
random indices, every song is now selected with
"equal fairness".

* Over time, every song will eventually get selected

playlist songs

randomized
playlist songs

song 1 0.34
song 2 0.61
song 3 0.45 ; '7
song 4 0.12 % P
song 5 0.94 \ , A
song 6 0.33 i
song 7 0.23 \Pa ; :
song 8 0.70 hY
song 9 0.03 Sorted by th«a77
Song i? ggg random index
song :
SoEg 10 |Da1 | 5 R,
song 13 | 0.86 o &
song 14 | 0.11 Vi %
song 15 |0.17 P |
song 16 | 0.81 / o
song 17 |0.53 / \
song 18 | 0.67 \
song 19 |0.27
song 20 [0.42 e Z
song 21 |0.47 e 7
song 22 |0.31 5 \‘I
song 23 |0.52
song 24 |0.93 .

= i Random index

song 9 0.03
song 14 |0.11
song 4 0.12
song 15 |0.17
song 11 |0.22
song 7 0.23
song 19 | 0.27
song 22 | 0.31
song 6 0.33
song 1 0.34
song 10 | 0.36
song 20 | 0.42
song 3 0.45
song 21 | 0.47
song 23 | 0.52
song 17 | 0.53
song 2 0.61
song 18 | 0.67
song 8 0.70
song 12 | 0.71
song 16 |0.81
song 13 | 0.86
song 24 | 0.93
song S 0.94

numbers assigned
to each song entry

How the random selection works

* The playlist can be configured to have a "redundant
title threshold". A song with duplicate title will be
moved to a later point in the list (postponed).

* The playlist can be configured to have a "redundant
artist threshold", allowing songs of the same artist to
be postponed as well.

* The random selection is bypassed if song requests are
added to the request queue.
— Those songs go to the “front of the line”.

— After the request queue is depleted, then the random
selection will resume.

How to deploy playgen

Install a reasonably new version of NodelS, at
least version 12 or greater

git clone the software into a fresh new directory

Run npm install to download dependancy
modules

Edit config/default.js to configure your MySQL
database

Create the ‘playlists’ table in the MySQL database

How to deploy playgen

* Populate the 'playlists’ table with your desired
playlist(s)

— The "Playlist Configuration" section in
documentation will guide you.

* Use “npm run start” to run the playgen service

* The playlist generator can be accessed with
API calls like these:

GET http://myhost:3000/api/playlists

GET http://myhost:3000/api/playlists/myplaylist

GET http://myhost:3000/api/playlists/myplaylist/nextsong
GET http://myhost:3000/api/playlists/myplaylist/currentsong

Playlist configuration

In the 'playlists' table, each row describes a playlist.

name: the id for the playlist

filePath: text file naming all the songs in the playlist, or a
directory full of song files

description: a human-readable description of the playlist

redundantTitleThreshold: how soon another song with an
identical name is allowed

redundantArtistThreshold: how soon another song with an
identical artist is allowed

partialTitleDelimiters: a collection of characters that will be
shorten duplicate title comparisons

songDetailsPluginName: optional customization of song details
extraction

Playlist configuration

partialTitleDelimiters allow similar titles to be
considered duplicate:

* Example: partialTitleDelimiters = " (,"
* These titles would all be treated as identical
— "Sing Along”
— "Sing Along (live)”
— "Sing Along, Sing With Me (medley)”
* They match because their first delimited sections
are identical

Playlist filenames

Details about the songs are embedded into
the songs filenames

Well-defined fields that denote title, artist, etc

By having this metadata in the filenames, the
song files themselves can be treated as totally
content-agnostic, avoiding expensive parsing

Exam ple: title-artist-album-label-year.mp3

Playlist filenames

For example: an MP3 file contains the song "Pearline" by
"Son House", from an album "The Original Delta Blues"
released by "Columbia Legacy" in 1965:

— title: Pearline

— artist: Son House

— album: The Original Delta Blues

— label: Columbia Legacy

— year: 1965

* The filename should be:

Pearline-Son House-The Original Delta Blues-
Columbia Legacy-1965.mp3

Playlist filenames

What if your files don’t match this naming
convention?

* You can make an automated shell script
program to take song files and convert them
to this naming convention. That will save you
a lot of bother over time.

e Using the new plugin architecture, a provided
“mp3Tags” plugin can be used to parse MP3
tags for song details (but slower startup)

Playlist filenames

My own automatic conversion script uses...

* A data file maps all my MP3s into their desired standard
names, and my shell script uses this file...

/var/www/tdp.com/public _html/blues/cakewalk:/usr2/Blues
oustic Medley:If I Leave This World Tomorrow, One Way

Ticket (medley)-Crimson Blues-Live at Bernal-T4P Music-
2012

/var/www/tdp.com/public html/blues/cakewalk:/usr2/Blues:

die:Sadie-Mark Jeghers-The Bluez Projekt-T4P Music-2013

Field 1 - the source directory

Field 2 - the destination to copy the file to
Field 3 - the file to copy over

Field 4 - the standardized name to rename it to

:Ac

Sa

Customizing with plugin architecture

* Playgen now allows customized Javascript
code to be added as “plugins”

* Allows customization for logging and song
details extraction

* Sample plugins provided:
— Logging to console, local file, or rsyslog server
— Song details extracted from filename or MP3 tags

— Boilerplate samples provided for developers

Using playgen with liquidsoap

To get a new song selection, we call this
playgen API...

— /api/vl/playlists/retro/nextsong?format=text
Using the Linux “curl” command to call the API
By default, the APl returns JSON data

The option “format=text” returns the next
song file as plain text

III

— This is easier for Liqguidsoap to consume

Using playgen with liquidsoap

 Sample .lig script
playlistJingles = audio_to_stereo(playlist("~liquidsoap/playlists/jingles-playlist.txt"))

def retro_request function() =
result = get process_output
("curl 'http://localhost:3000/api/vl1/playlists/retro/nextsong?format=text'")
in V2 use process.read instead
in Windows, you might have to remove the single-quotes from the above command
log ("Next song "“result)
request.create (result)
end

... more similar request functions here for other sources

Create the sources

plr = request.dynamic(retro request function) # <-- this is where we call playgen
Play a station ID jingle after every fourth song

plr = rotate (weights=[1,4], [playlistJingles, plr])

... more sources created here

output.icecast (
$mp3 (bitrate=48, id3v2=true),
host="localhost", port=8000, password="some-password",
mount="/retro", genre="0ld Pre-War Blues",
description="Retro Pre-war blues all the time",
url="http://www.yourdomain.com:8000/retro", mksafe (plr))

... more sources connected to icecast here

The REST API for playgen

e Given: a host named somehost and port 3000

GET http://somehost:3000/api/v1/playlists
Returns a list of all playlists

Sample response body
{
"status": "OK",
"result": [
{
"name": "johnson",
"filePath": "/usr/local/nodeapps/playgen/playlists/johnson-playlist.txt",
"description": "Songs by Robert Johnson",
"redundantTitleThreshold": O,
"partialTitleDelimiters": "",
"redundantArtistThreshold": O,
"songCount": 29,
"uri": "http://192.168.0.248:3000/api/v1l/playlists/johnson"
} ’
. etc etc etc ...
"count": 6

The REST API for playgen

* More API examples

* POST http://myhost:3000/api/v1/playlists
— Creates a new playlist

* PUT http://myhost:3000/api/v1/playlists/{playlist}
— Updates a playlist (except for song details)

 DELETE http://myhost:3000/api/v1/playlists/{playlist}
— Deletes a playlist (song files are not removed)

The REST API for playgen

* Songs within a playlist

GET http://somehost:3000/api/v1/playlists/
{playlist}/songs

Returns a list of all the songs in the specified playlist

GET http://somehost:3000/api/v1/playlists/
{playlist}/songs/{songindex}

Returns a specified song in the specified playlist

The REST API for playgen

Song requests within a playlist

POST http://somehost:3000/api/v1/playlists/

{playlist}/requests
— Creates a new song request for the specified playlist

— Sample request body
{

"songIndex": 22

}

GET http://somehost:3000/api/v1l/playlists/
{playlist}/requests

Returns a list of all the song requests for the specified
playlist

The REST API for playgen

* Song selection (most important!)

e GET http://somehost:3000/api/v1/playlists/

{playlist}/nextsong[?format=text]
— Returns the next song selection for the specified playlist.

— Either random selection, or, if the request queue is not
empty, the first song in the request queue.

e GET http://somehost:3000/api/v1/playlists/

{playlist}/currentsong
— Returns the most recent song selection
— Does not cause any new song selection to occur

Future ideas

* More new plugins to allow the use of
non-standardized filenames?

* Currently, song history is cleared upon restart
— Perhaps persist the history on file or DB table?

Summary

I’'ve been using playgen for years

The randomization of song selection is fine-
tuned for the best human experience possible

The RESTful API allows you to build robust
web-apps for managing the playlists

We are open to ideas to improve playgen,
making it fit more use cases

Thank You!

— System Monitor 53 DASHBOARD J ICECAST o CALLSIGN : M FUNMINES : TOOLS ¥, &

L "
ICECAST SERVER SOURCES

Adrmin Email icemastern@localhost ,
Current Clients & ik
Past Client Connections 181667

Host Domain www.tdp.com

Current Listeners 0

Past Listener Connections 48

Location Earth

Server lcecast 2.4.4

Server Start Time Tue, 21 Sep 2021 18:21:02 -0700
Source Connections (Client) 5

Source Connections (Relay)

205 song(s) - 0 listener(s)

everything

5 song(s) - O histener(s)

johnson

29 song(s) - 0 kstener|s)

miod

59 song(s) - 0 kstener(s)

0
Source Connections (Total) &
5

retro
337 song(s) - O listener(s)

Sources

This project is licensed under the MIT license. en v Made with love by Technology for Peoph

https://github.com/jeghers/playgen

