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Context

● Martin Kirchgessner, Web developer (Python)
● Benevolent tech at Radio Campus Grenoble
● Using Liquidsoap for 2 years

… with Showergel, a Liquidsoap companion app



Liquidsoap needs companion apps
From https://www.liquidsoap.info/doc-2.1.4/

Non-Features
[...]
Liquidsoap itself doesn’t have a nice GUI or any graphical 
programming environment.
[...]
Liquidsoap doesn’t do any database or website stuff

https://www.liquidsoap.info/doc-2.1.4


   �️️�Today’s tutorial

● Make Liquidsoap call your app
● Send Liquidsoap commands from your app
● Useful commands
● External commands and source composition



️️️️️️️️️️️️️️ T️wo strategies of interaction

1) Make Liquidsoap call your app

2) Send Liquidsoap commands from your app

You can use both !



Make Liquidsoap call your app



Command line call

● request.dynamic + process.read

● request.dynamic will call your program when trying to load 
something to play next

● great for music



Command line call - example
Using the beets music library:
    $ beet random -f '$path' added:-1y.. genre:Reggae

    /home/martin/beets/Non-Album/Yellowman/We Wish You a Reggae Christmas.mp3

Creating a Liquidsoap source:
    recent_reggae = request.dynamic(id=“recent_reggae“, retry_delay=1., {

        request.create(string.trim(

              process.read("beet random -f '$path' added:-1y.. genre:Reggae")

        ))

    })

https://beets.io/


HTTP calls
If your app has an HTTP server

● http.put
● http.post
● http.get
● http.head
● http.delete

Great for metadata !

→ with JSON data



   📦Prepare metadata
● metadata.cover.remove
● metadata.export

def post_metadata(md)
  response = http.post("http://localhost:1234/metadata_log",
    headers=[("Content-Type", "application/json; charset=UTF-8")],
    data=metadata.json.stringify(metadata.cover.remove(md))
  )
  if response.status_code != 200
  then
    log(label="Warning", "#{response} #{response.status_code} #{response.status_message}")
  end
end

source.on_metadata(fun(m) -> thread.run(fast=false, {post_metadata(m)}))

→ removes LS metadata



Send Liquidsoap commands
from your app



   💊Choose your connection

Telnet or HTTP ?



   🔌Telnet

settings.server.telnet.set(true)

● Configure binding IP / port / socket
● Send a command, parse a response
● A legacy protocol… that works



   �️️�HTTP

server.harbor()

POST a command,

parse the response



⚠T️here is only one harbor
● In my script

● In the log

●  ⚠️But it’s at http://192.168.1.14:8000/telnet
● Could be a public address 😱

settings.harbor.bind_addrs.set(["192.168.1.14"])
server.harbor(port=8000)
live = input.harbor(port=8008, "live")

[server.harbor:3] Website should be ready at <http://localhost:8000/telnet>.

← Always add auth/user/pass

http://192.168.1.14:8000/telnet


I’m sticking to telnet...

… for now

How about WebSockets ?



Useful commands



help

● Your best friend when 
developping !

● List available commands ; 
most start with the object 
ID



Always use „id“  

● Every source/operator has an „id“ argument
● Give it a meaningful name

● Clearer logs
● Clearer commands



Output commands

When your main output’s ID is main_out
● main_out.skip
● main_out.metadata
● main_out.remaining

→ skips current track

 ⚠️can contain lyrics/image

→ seconds in current track



Pushing requests

If your script contains request.queue(id="queuedfiles")
● queuedfiles.flush_and_skip
● queuedfiles.push <uri>
● queuedfiles.queue
● queuedfiles.skip

→ list of requests IDs (RID)



Beware of RIDs
Those commands are always available:

● request.alive
● request.all
● request.metadata <rid>
● request.on_air
● request.resolving
● request.trace <rid>

→ all RIDs in use by Liquidsoap (expect many)

→ can return „10  45“ 🤔



HTTP Streams

If your script contains:
input.http(id="external_stream", "https://...", start=false, max_buffer=30.)

● external_stream.buffer_length

● external_stream.start

● external_stream.status

● external_stream.stop

● external_stream.url [url]

⬆️
Won’t stream
until the .start

command



HTTP Streams

If your script contains input.harbor(id="incoming", ...
● incoming.buffer_length
● incoming.status
● incoming.stop → „kick“ current stream



External commands
and

source composition



   🧠Keep in mind

Everything can
Crash

Disappear
Stutter

Make noise
...



Commands lag

● Pushing a request starts its download
● Starting a stream starts its buffering
● Switching sources will leave the old one as it was

● In the middle on a song/show
● With a bit more content in the buffer



   💿Track-sensitive or not ?

Switch / fallback operators have a track_sensitive 
option

● Enabling it (default) is useful to enqeue files
● You can still flush push/after switch

● Track-insensitive is useful for streams 

Staying on time is hard



   �️️�The mixer

Liquidsoap script
v1 = interactive.float("volume1", 1.)

s1 = amplify(v1, request.queue(id="track1"))

v2 = interactive.float("volume2", 0.)

s2 = amplify(v2, request.queue(id="track2"))

source = add(s1, s2)

...

Commands
[track1 is on air]

track2.push /path/to/file.wav

var.set volume2 = 1.

var.set volume1 = 0.

track1.flush_and_skip



   �️�The mixer

 ⚠️Sources at volume=0. are still playing (if available)
● At least, it can flush HTTP sources’ buffers

... but is the source at volume=1. really playing ?



Conclusion



  🤩So many options

(many others) Sources and operators!

● Active / passive app
● HTTP / telnet / CLI



   🫠So many dangers !

Everything can
Crash

Disappear
Stutter

Make noise
...



   🧴Showergel

● See „quick install“ on 
https://github.com/martinkirch/showergel

● quickstart.liq provides many examples

https://github.com/martinkirch/showergel


   🧴Showergel

● Plugging it on any Liquidsoap script is too hard

● Will progressively hide the Liquidsoap script 

● Will change its name

… yet another radio automaton !



Your app will be bound to Liquidsoap

● Your app and your script.liq are heavily coupled
● call/connection strategy
● mixing strategy
● sources/operators identifiers
● failure handling

● When upgrading LS, read the changelog (even bugfixes)



Documentation suggestion

● Add new / experimental / legacy / deprecated flags
● Show each page’s modification date
● Core/Extra API ?



Thanks !

github.com/martinkirch

@martin_kirch@piaille.fr

https://github.com/martinkirch
https://piaille.fr/@martin_kirch
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