
Making your app  ️ ⚙️
interact with Liquidsoap
Martin Kirchgessner
Liquidshop 3
30 May 2023



Context

● Martin Kirchgessner, Web developer (Python)
● Benevolent tech at Radio Campus Grenoble
● Using Liquidsoap for 2 years

… with Showergel, a Liquidsoap companion app



Liquidsoap needs companion apps
From https://www.liquidsoap.info/doc-2.1.4/

Non-Features
[...]
Liquidsoap itself doesn’t have a nice GUI or any graphical 
programming environment.
[...]
Liquidsoap doesn’t do any database or website stuff

https://www.liquidsoap.info/doc-2.1.4


   �️️�Today’s tutorial

● Make Liquidsoap call your app
● Send Liquidsoap commands from your app
● Useful commands
● External commands and source composition



️️️️️️️️️️️️️️ T️wo strategies of interaction

1) Make Liquidsoap call your app

2) Send Liquidsoap commands from your app

You can use both !



Make Liquidsoap call your app



Command line call

● request.dynamic + process.read

● request.dynamic will call your program when trying to load 
something to play next

● great for music



Command line call - example
Using the beets music library:
    $ beet random -f '$path' added:-1y.. genre:Reggae

    /home/martin/beets/Non-Album/Yellowman/We Wish You a Reggae Christmas.mp3

Creating a Liquidsoap source:
    recent_reggae = request.dynamic(id=“recent_reggae“, retry_delay=1., {

        request.create(string.trim(

              process.read("beet random -f '$path' added:-1y.. genre:Reggae")

        ))

    })

https://beets.io/


HTTP calls
If your app has an HTTP server

● http.put
● http.post
● http.get
● http.head
● http.delete

Great for metadata !

→ with JSON data



   📦Prepare metadata
● metadata.cover.remove
● metadata.export

def post_metadata(md)
  response = http.post("http://localhost:1234/metadata_log",
    headers=[("Content-Type", "application/json; charset=UTF-8")],
    data=metadata.json.stringify(metadata.cover.remove(md))
  )
  if response.status_code != 200
  then
    log(label="Warning", "#{response} #{response.status_code} #{response.status_message}")
  end
end

source.on_metadata(fun(m) -> thread.run(fast=false, {post_metadata(m)}))

→ removes LS metadata



Send Liquidsoap commands
from your app



   💊Choose your connection

Telnet or HTTP ?



   🔌Telnet

settings.server.telnet.set(true)

● Configure binding IP / port / socket
● Send a command, parse a response
● A legacy protocol… that works



   �️️�HTTP

server.harbor()

POST a command,

parse the response



⚠T️here is only one harbor
● In my script

● In the log

●  ⚠️But it’s at http://192.168.1.14:8000/telnet
● Could be a public address 😱

settings.harbor.bind_addrs.set(["192.168.1.14"])
server.harbor(port=8000)
live = input.harbor(port=8008, "live")

[server.harbor:3] Website should be ready at <http://localhost:8000/telnet>.

← Always add auth/user/pass

http://192.168.1.14:8000/telnet


I’m sticking to telnet...

… for now

How about WebSockets ?



Useful commands



help

● Your best friend when 
developping !

● List available commands ; 
most start with the object 
ID



Always use „id“  

● Every source/operator has an „id“ argument
● Give it a meaningful name

● Clearer logs
● Clearer commands



Output commands

When your main output’s ID is main_out
● main_out.skip
● main_out.metadata
● main_out.remaining

→ skips current track

 ⚠️can contain lyrics/image

→ seconds in current track



Pushing requests

If your script contains request.queue(id="queuedfiles")
● queuedfiles.flush_and_skip
● queuedfiles.push <uri>
● queuedfiles.queue
● queuedfiles.skip

→ list of requests IDs (RID)



Beware of RIDs
Those commands are always available:

● request.alive
● request.all
● request.metadata <rid>
● request.on_air
● request.resolving
● request.trace <rid>

→ all RIDs in use by Liquidsoap (expect many)

→ can return „10  45“ 🤔



HTTP Streams

If your script contains:
input.http(id="external_stream", "https://...", start=false, max_buffer=30.)

● external_stream.buffer_length

● external_stream.start

● external_stream.status

● external_stream.stop

● external_stream.url [url]

⬆️
Won’t stream
until the .start

command



HTTP Streams

If your script contains input.harbor(id="incoming", ...
● incoming.buffer_length
● incoming.status
● incoming.stop → „kick“ current stream



External commands
and

source composition



   🧠Keep in mind

Everything can
Crash

Disappear
Stutter

Make noise
...



Commands lag

● Pushing a request starts its download
● Starting a stream starts its buffering
● Switching sources will leave the old one as it was

● In the middle on a song/show
● With a bit more content in the buffer



   💿Track-sensitive or not ?

Switch / fallback operators have a track_sensitive 
option

● Enabling it (default) is useful to enqeue files
● You can still flush push/after switch

● Track-insensitive is useful for streams 

Staying on time is hard



   �️️�The mixer

Liquidsoap script
v1 = interactive.float("volume1", 1.)

s1 = amplify(v1, request.queue(id="track1"))

v2 = interactive.float("volume2", 0.)

s2 = amplify(v2, request.queue(id="track2"))

source = add(s1, s2)

...

Commands
[track1 is on air]

track2.push /path/to/file.wav

var.set volume2 = 1.

var.set volume1 = 0.

track1.flush_and_skip



   �️�The mixer

 ⚠️Sources at volume=0. are still playing (if available)
● At least, it can flush HTTP sources’ buffers

... but is the source at volume=1. really playing ?



Conclusion



  🤩So many options

(many others) Sources and operators!

● Active / passive app
● HTTP / telnet / CLI



   🫠So many dangers !

Everything can
Crash

Disappear
Stutter

Make noise
...



   🧴Showergel

● See „quick install“ on 
https://github.com/martinkirch/showergel

● quickstart.liq provides many examples

https://github.com/martinkirch/showergel


   🧴Showergel

● Plugging it on any Liquidsoap script is too hard

● Will progressively hide the Liquidsoap script 

● Will change its name

… yet another radio automaton !



Your app will be bound to Liquidsoap

● Your app and your script.liq are heavily coupled
● call/connection strategy
● mixing strategy
● sources/operators identifiers
● failure handling

● When upgrading LS, read the changelog (even bugfixes)



Documentation suggestion

● Add new / experimental / legacy / deprecated flags
● Show each page’s modification date
● Core/Extra API ?



Thanks !

github.com/martinkirch

@martin_kirch@piaille.fr

https://github.com/martinkirch
https://piaille.fr/@martin_kirch

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38

